Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
GLOBETECH PUBLISHING LLC
FOCUS DIAGNOSTICS, INC.

Multiple Microbiological Tests Needed for Underweight Newborns

By Labmedica International staff writers
Posted on 04 Mar 2013
Image: The oral bacteria Fusobacterium nucleatum (Photo courtesy of HealthyDent).
Image: The oral bacteria Fusobacterium nucleatum (Photo courtesy of HealthyDent).
Cultures commonly used to detect bacterial infections in low birth-weight newborns with early onset sepsis may fail to detect some microorganisms.

There is a need for multiple detection methods, such as DNA genomic analyses and other independent culture technologies, to identify bacteria that routine culturing may miss.

Scientists at Case Western Reserve University (Cleveland, OH, USA) performed a comparative microbial analysis of paired amniotic fluid (AF) and cord blood (CB) from pregnancies complicated by preterm birth and early-onset neonatal sepsis. The biological samples from 44 women were collected from September 2004 to February 2009.

Amniotic fluid (AF) was cultured for aerobic and anaerobic bacteria, Ureaplasma and Mycoplasma species. DNA was extracted from AF or CB serum. To identify the species amplified by polymerase chain reaction (PCR) and to ensure that the PCR amplicons were indeed bacterial ribosomal ribonucleic acid (rRNA) genes rather than artifacts, the PCR products were cloned into the pCR8 vector (Invitrogen, Carlsbad, CA, USA).

The investigators found more than 20 bacterial species not discovered using standard culturing. Some of the uncultured species appeared in both the cord blood and amniotic fluid samples. The uncultured bacteria were detected with DNA genomic analysis that had been used in a prior study that discovered the link between oral bacteria that causes still- or premature-births due to infected amniotic fluid that is supposed to be a sterile environment.

Yiping Han, PhD, the professor of Periodontics and Reproductive Biology at the Case Western, said, "Culture independent technology has broadened our scope of understanding human pathogens. DNA testing techniques were able for the first time to detect the oral bacteria Fusobacterium nucleatum, Bergeyella, and Sneathia sanguinegens that brought on early neonatal sepsis and put newborns at risk of dying shortly after birth. Among these, F. nucleatum was found at the same high frequency as the well-known Escherichia coli, putting the former on the same importance scale as the latter." The study was published on February 20, 2013, in the journal Public Library of Science ONE.

Related Links:

Case Western Reserve University
Invitrogen



KARL HECHT GMBH & CO KG
77 ELEKTRONIKA
CELLAVISION AB
PERIPHERAL VISIONS INC

Channels

Genetic Tests

view channel
Image: Histopathology of tuberculoid leprosy in a skin section (Photo courtesy Dr. D.S. Ridley, Wellcome Images).

Genes Discovered Influence Risk of Developing Leprosy

Leprosy, a chronic dermatological and neurological disease, is caused by infection with Mycobacterium leprae, and its manifestation, progression and prognosis are strongly associated with the proficiency... Read more

Hematology

view channel
Image: Plastic bag containing 0.5 to 0.7 liters of packed red blood cells in citrate, phosphate, dextrose, and adenine (CPDA) solution (Photo courtesy of Fresenius HemoCare).

Transfusion Protocols Compared After Cardiac Surgery

Unnecessary blood transfusions may increase healthcare costs both directly, because blood is an increasingly scarce and expensive resource, and indirectly due to the complications associated with transfusion.... Read more

Industry News

view channel

Latin America’s IVD Sector Exceeds USD 2 Billion, Brazil leads

The Latin American in vitro diagnostics (IVD) sector was estimated at USD 2.4 billion in 2014. Population growth, government insurance, newly insured patients, and updated healthcare facilities have driven growth in the region and will continue to propel demand, according to Kalorama Information (New York, NY, USA).... Read more
 

Events

06 Apr 2015 - 08 Apr 2015
07 Apr 2015 - 09 Apr 2015
13 Apr 2015 - 16 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.