We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Assay Defines an Individual's Total Virus Burden

By LabMedica International staff writers
Posted on 15 Jun 2015
Print article
Image: Some of the hundreds of viruses that make up the human virome (Photo courtesy of the European Molecular Biology Laboratory).
Image: Some of the hundreds of viruses that make up the human virome (Photo courtesy of the European Molecular Biology Laboratory).
An advanced bacteriophage-based microarray assay allows the simultaneous identification of all the viruses comprising an individual's virome from a sample of less than one microliter of blood.

In addition to directly causing acute or chronic illness, viral infections can alter host immunity and have a long-lasting effect on the immune system. This interplay between virome—an individual's total viral burden from previous and current infections and vaccinations—and host immunity has been implicated in the pathogenesis of complex diseases such as type I diabetes, inflammatory bowel disease, and asthma.

Current serological methods to detect viral infections are predominantly limited to testing one pathogen at a time and are therefore used primarily to diagnose specific diseases. Investigators at Harvard Medical School (Boston, MA, USA) developed a method to simultaneously detect responses to all human viruses in order to establish associations between past viral infections and particular diseases or population structures.

The new assay method, VirScan, is a high-throughput technique that allows comprehensive analysis of antiviral antibodies in human sera. The technique is based on a library of bacteriophages that carry DNA fragments specific for more than 93,000 different segments of viral proteins. The bacteriophages produce distinct surface peptides that bind to anti-viral antibodies in the patient's blood. Immunoprecipitation and high-throughput DNA sequencing reveal the peptides recognized by antibodies in the sample. The analysis requires less than one microliter of blood, and currently requires two to three days to process 100 samples.

The investigators screened sera from 569 human donors from the United States, South Africa, Thailand, and Peru, assaying a total of over 108 antibody-peptide interactions for reactivity to 206 human viral species and more than 1000 strains. They found that VirScan’s performance in detecting known infections and distinguishing between exposures to related viruses was comparable to that of classical serum antibody tests for single viruses. They detected antibodies to an average of 10 viral species per person and 84 species in at least two individuals. This approach mapped antibody targets at 56–amino acid resolution, and the results nearly doubled the number of previously established viral B-cell epitopes.

Senior author Dr. Stephen Elledge, professor of genetics at Harvard Medical School, said, "We have developed a screening methodology to basically look back in time in people's [blood] sera and see what viruses they have experienced. Instead of testing for one individual virus at a time, which is labor intensive, we can assay all of these at once. It is one-stop shopping, and it turns out that it works really well. We were in the sensitivity range of 95% to 100% for those, and the specificity was good—we did not falsely identify people who were negative. That gave us confidence that we could detect other viruses, and when we did see them we would know they were real. In this paper alone we identified more antibody/peptide interactions to viral proteins than had been identified in the previous history of all viral exploration."

The study was published in the June 5, 2015, issue of the journal Science.

Related Links:

Harvard University 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.