We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Low-Cost Sophisticated Device Diagnoses HIV

By LabMedica International staff writers
Posted on 16 Dec 2014
Print article
Image: Cut-away view of the reusable PATH NINA device showing relative location of insulation, heat source, phase change material, and samples (Photo courtesy of Paul LaBarre).
Image: Cut-away view of the reusable PATH NINA device showing relative location of insulation, heat source, phase change material, and samples (Photo courtesy of Paul LaBarre).
The diagnosis of human immunodeficiency virus (HIV) and other infectious diseases present unique challenges in remote locations that lack electric power, refrigeration, and appropriately trained health care staff.

A low-cost, electricity-free device has been developed that uses a small scale chemical reaction, rather than electric power, to provide the heat needed to amplify and detect the DNA or RNA of pathogens present in blood samples obtained from potentially infected individuals.

Scientists at an international non-profit global health organization (PATH; Seattle, WA, USA) developed and continued to improve a system known as NINA, for non-instrumental nucleic acid amplification. The goal was to expand access to accurate diagnostics wherever they are needed, especially those areas that lack reliable electricity. The amplification process involves extracting nucleic acids from an individual's blood sample, mixing it with a nucleic acid segment from the pathogen of interest, and using constant temperature heat in a process that makes many copies of (amplifies) pathogen nucleic acids present in the blood sample. The results of the test are highly accurate and easily visualized with a simple dipstick that reveals a colored band indicating the presence of the pathogen nucleic acids.

The team engineered each component of the incubator for maximum performance, ensuring that the amplification reaction that takes place in tiny test tubes maintains a constant temperature. To achieve this, the group identified a special compound that can store and regulate the heat created by the chemical reaction and can also be easily configured to the tube-holder design, guaranteeing uniform heating on each tube's surface. When designing the main body of the device, the team used a thermal imaging camera to assess the performance of inexpensive materials, and eventually chose a reusable thermos and cover that minimize system heat loss.

The team checked the ability of the NINA incubator to function properly over a range of ambient temperatures. The device maintained the required 140 °C when tested in environments ranging from 50 °C to 90 °C. The group demonstrated that their amplification system provides sensitive and repeatable detection of HIV-1 in just 80 minutes. They are now working to pair their amplification system with a simple technique for preparing nucleic acids from blood samples in the field. The newest version of the incubator produces heat using magnesium iron alloy (MgFe). MgFe was chosen because it costs just USD 0.06 per reaction and can be supplied in a self-contained packet. To start the heat-producing reaction, a technician simply adds saline solution to the packet at the bottom of the thermos.

Paul LaBarre, MME, a senior technical officer at PATH and lead author of the study, said, “To complete this low-resource setting diagnostic, one remaining need is the integration of a simple method for isolating nucleic acids from patient blood samples before amplification. Current methods are expensive and technically difficult. Fortunately, there are several methods we are testing that look promising.” The study was published on November 26, 2014, in the journal Public Library of Science ONE.

Related Links:
PATH 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.