We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Synthetic Gene Networks Enable Rapid Virus Detection

By LabMedica International staff writers
Posted on 04 Nov 2014
Print article
Image: Schematic diagram of the Synthetic Gene Network for detecting viral RNA molecules (Photo courtesy of the Wyss Institute).
Image: Schematic diagram of the Synthetic Gene Network for detecting viral RNA molecules (Photo courtesy of the Wyss Institute).
An original method for using engineered gene circuits has been developed that allows investigators to safely activate the cell-free, paper-based system by simply adding water.

The low-cost, easy-to-use synthetic gene network platform that can control the activity of genes and recognize nucleic acids and small molecules could enable the rapid detection of different strains of deadly viruses such as Ebola.

Scientists at the Wyss Institute for Biological Inspired Engineering (Harvard University, Boston, MA, USA) developed a cell-free, paper-based system suitable for use outside specialized laboratories. To test the clinical relevance of their method, they developed sensors capable of detecting ribonucleic acid (RNA) molecules made from genes that allow bacteria to survive antibiotics, as well as RNA molecules encoding proteins from two different strains of the highly deadly Ebola virus. When freeze-dried onto paper, the sensors quickly detected the presence of these RNA molecules demonstrating the usefulness of the approach for diagnostic purposes.

The scientists created circuits with colorimetric outputs for detection by eye and fabricated a low-cost, electronic optical interface for field use. They tested to see whether the enzyme activity required for transcription and translation could be reconstituted from freeze-dried cell-free expression systems, which normally require storage at -80 °C. A new generation of riboregulators was tested in an in vitro demonstration of toehold switches and these robust biomolecular switches provide tight translational regulation over transcripts and exhibit excellent orthogonality.

James J. Collins, PhD, a professor and senior author of the study, “Our paper-based system could not only improve tools currently only available in the laboratory, but would be readily useful for the field, and also improve the development of new tools. Considering the projected cost, reaction time, ease of use, and no requirement for laboratory infrastructure, we envision paper-based synthetic gene networks significantly expanding the role of synthetic biology in the clinic, global health, and education.” The study was published on October 23, 2014, in the journal Cell.

Related Links:

Wyss Institute for Biological Inspired Engineering



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.