Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Noninvasive Method Captures Circulating Tumor Cells

By LabMedica International staff writers
Posted on 24 Jul 2014
A clinically proven, noninvasive fluorescence virus-guided capture system of human colorectal circulating tumor cells (CTCs) from blood samples for genetic testing has been introduced. More...


This noninvasive companion diagnostics is important for personalized targeted cancer therapy because current CTC detection strategies mainly depend on epithelial cell-surface markers, and the presence of heterogeneous populations of CTCs with epithelial and/or mesenchymal characteristics may pose obstacles to the detection of CTCs.

Scientists at Okayama University (Japan) developed a new approach to capture live CTCs among millions of peripheral blood leukocytes using a green fluorescent protein (GFP)-expressing attenuated adenovirus, in which the telomerase promoter regulates viral replication. The team used different cell lines and a recombinant adenovirus.

Immunochemical staining was performed on cells seeded on tissue culture chamber slides. The cells were labelled with primary mouse antibodies for various receptors and were analyzed using single cell flow cytometry (FACS; Becton Dickinson, Mountain View, CA, USA). DNA was extracted from CTC models and clinical samples and gene mutation analysis was carried out by direct sequencing and the sequence of each gene was analyzed with an ABI PRISM 3100 Genetic Analyzer (Life Technologies; Carlsbad, CA, USA).

The blood samples obtained from eight patients with gene-mutated colorectal cancers were analyzed by the replication competent adenovirus OBP-401-based CTC capture system and by allele-specific blocker polymerase chain reaction (ASB-PCR) technology. In preliminary experiments, the number of GFP-positive cells at the P3 gate was less than 10 cells in some clinical blood samples and, therefore, they performed ASB-PCR analysis using GFP-positive cells at the P2 gate. Among the eight blood samples from patients with various stages of colorectal cancer, the same gene mutations as in the primary tumors were detected in the CTCs of two patients with advanced colorectal cancer.

The authors concluded that they have established a telomerase-dependent biological CTC capture system for genotyping of epithelial, mesenchymal, and epithelial-mesenchymal transition (EMT)-induced types of CTCs using telomerase-specific replication-competent adenovirus variant OBP-401 and fluorescent activated cell sorting (FACS) analysis. This technology facilitates the surveillance of genetic alterations in viable CTCs in patients with cancer. The study was published on July 8, 2014, in the journal Gut.

Related Links:

Okayama University
Becton Dickinson
Life Technologies



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.