Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
AB Sciex

IDT Acquires SURVEYOR Nuclease Product Line from Transgenomic

By Labmedica International staff writers
Posted on 14 Jul 2014
The SURVEYOR line is to be used by Integrated DNA Technologies (IDT; Coralville, IA, USA) primarily to support researchers performing mutation detection and potentially-clinical genome editing, and by Transgenomic, Inc. (Omaha, NE, USA) primarily to support diagnostic and other clinical applications.

IDT, a world leader in custom nucleic acid synthesis, is expanding its offerings by adding the SURVEYOR enzyme and kits of Transgenomic, a global company advancing diagnostics, cytogenetics, and specialized clinical and research services. As part of the agreement, IDT will acquire the SURVEYOR product line and intellectual property. Transgenomic will receive an exclusive license for clinical and diagnostic use of SURVEYOR products from IDT. Additional terms of the acquisition were not disclosed.

The key component of SURVEYOR products is SURVEYOR Nuclease, a member of the CEL nuclease family of mismatch-specific nucleases isolated from celery. SURVEYOR Nuclease has been shown to recognize and cleave mismatches arising from single nucleotide polymorphisms or small insertions or deletions.

The SURVEYOR Mutation Detection Kits provide a simple and robust method for detecting mutations and polymorphisms in DNA. IDT will sell the kits for both gel electrophoresis analysis and use on Transgenomic’s WAVE and WAVE HS systems. Transgenomic will continue to sell and support the WAVE and WAVE HS systems.

In addition, SURVEYOR Mutation Detection has emerged as the method of choice for verifying the outcome of designed genome editing via zinc finger nucleases, TALENs, CRISPR/Cas9 systems, and other emergent technologies. These technologies are being investigated for use in excising defective regions within a genome and replacing them with the correct, desired sequences. For example, clustered regulatory interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) systems, which occur naturally in lower organisms, are being manipulated to provide a flexible, specific, and relatively easy means of modifying mammalian genomes. Scientists are developing CRISPR/Cas9 systems for use in the clinic with the hope that millions of people can be cured of genetic disease.

Stephen Gunstream, Chief Commercial Officer at IDT, said, “We are excited about adding the SURVEYOR product line to our growing molecular biology portfolio. These products will be of great benefit to IDT customers, most of whom are in the field of genetic analysis, and of particular use to those whose work involves mutation detection or validation of CRISPR/Cas9 genome editing. IDT can offer these products with the same speed, quality, and support for which we have become known. We plan to continue developing and commercializing further applications of SURVEYOR Nuclease.”

Paul Kinnon, President and Chief Executive Officer of Transgenomic, said, “The sale of our SURVEYOR Nuclease technology and assets for the research market to IDT allows us to focus more resources on our commercialization efforts in our core Patient Testing, Biomarker Identification, and Genetic Analysis and Platforms business units. By licensing back exclusive rights to clinical and diagnostic uses of the technology, we have ensured that we will have continued access to SURVEYOR technology in high value clinical and pharmaceutical services applications.”

Related Links:

Integrated DNA Technologies
Transgenomic



DRG International
77 ELEKTRONIKA
DiagCor Bioscience
comments powered by Disqus
Life Technologies

Channels

Clinical Chemistry

view channel
Image: The API 5000 triple quadruple mass spectrometer (Photo courtesy of AB SCIEX).

Serum Prostate-Specific Antigen Measured by Tandem Mass Spectrometry

Prostate-specific antigen (PSA) is a widely used blood test for detection and monitoring of prostate disease and many clinicians assume that all test methods produce essentially the same results, though... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.