Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
Bio-Rad Diabetes Division
RANDOX LABORATORIES

Infrared Light Detects and Quantifies Malaria Parasites

By Labmedica International staff writers
Posted on 08 May 2014
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
A novel way to detect malaria, one of the most common and deadly diseases in the world, that also quantifies the early stage parasites, has been developed.

The quick and inexpensive test uses infrared light to detect malaria at a very early stage of its development by looking for fatty acids in the parasite and could dramatically reduce the number of people who die from the disease.

Scientists at Monash University (Clayton, VIC, Australia) maintained cultured Plasmodium falciparum parasites synchronized to ring stages by sorbitol lysis. High parasitemia ring-stage cultures were obtained by seeding uninfected red blood cells with purified schizont-stage parasites that were allowed to reinvade under shaking conditions overnight, reducing multiple infections.

The method to rapidly detect and quantify different stages of malaria parasites, including ring and gametocyte forms, used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) and partial least-squares regression (PLS). A Bruker model Equinox 55 (Bruker Optic; Ettingen, Germany) FT-IR spectrometer fitted with a nitrogen-cooled mercury–cadmium–telluride (MCT) detector and a golden gate diamond ATR accessory (Specac Limited; Orpington, UK) was used for spectral acquisition. ATR-FTIR utilizes infrared light to detect the vibrations of molecules and essentially depicts the entire chemistry of the system under investigation.

The scientists already knew that fatty acids were a marker for the disease from previous studies at the Australian Synchrotron. The Synchrotron allowed the team to see the different life stages of the parasite and the variation in its fatty acids. They then applied these insights to develop an inexpensive laboratory based test that has the potential to be portable. The results confirmed the ability of ATR-FT-IR to detect parasitaemia levels down to 0.00001%.

Bayden R. Wood, PhD, the senior author of the study, said, “Not only did the test give clear results within minutes, it gave a clear indication of malaria at a much earlier stage of infection than current tests on the market. Now that we can detect the early stages of a parasite's life in the blood stream the disease will be much easier to test and treat. The big advantage of our test is that it doesn't need scientists and expensive equipment. This has the potential to dramatically reduce the number of people dying from this disease in remote communities.” The study was published on April 2, 2014, in the journal Analytical Chemistry.

Related Links:

Monash University
Bruker Optic
Specac Limited



DIASYS DIAGNOSTIC SYSTEMS
KARL HECHT GMBH & CO KG
77 ELEKTRONIKA

Channels

Hematology

view channel
Image: The ADVIA 2120 Hematology System (Photo courtesy of Siemens).

Preoperative Blood Cell Ratios Predict Endometrial Cancer Survival

The variations in systemic inflammatory response biomarker levels have been associated with adverse clinical outcome in various malignancies and the host response to malignant tumors is characterized by... Read more

Immunology

view channel
Image: The Covaris S2 Ultrasonicator for shearing DNA (Photo courtesy of Covaris).

Genetic Mutation Impairs Immunity in Candidiasis and Mycobacteriosis

Human inborn errors of immunity mediated by the cytokines interleukin-17A/F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease.... Read more

Microbiology

view channel
Image: Transmission electron micrograph (TEM) of norovirus virions, or virus particles (Photo courtesy of Charles D. Humphrey/CDC).

Immunochromatography Tests Evaluated for Detection of Novel Norovirus

A novel GII.17 Norovirus has emerged as a major cause of epidemic and endemic acute gastroenteritis in several countries in Asia. From September 2014 to March 2015, 70% of all outbreaks in Guangdong... Read more

Industry News

view channel

Cancer Genetics Expands Access to Proprietary Diagnostics Through Agreement with Harvard Pilgrim

Under the terms of a new agreement between Cancer Genetics, Inc. (CGI; Morrisville, NC, USA) and Harvard Pilgrim Healthcare (Hartford, CT; USA), a health care network covering over one million people throughout Massachusetts, Connecticut, and Maine, CGI will offer its cancer diagnostic services to individuals covered under... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.