Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
RANDOX LABORATORIES
AB Sciex

Infrared Light Detects and Quantifies Malaria Parasites

By Labmedica International staff writers
Posted on 08 May 2014
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
A novel way to detect malaria, one of the most common and deadly diseases in the world, that also quantifies the early stage parasites, has been developed.

The quick and inexpensive test uses infrared light to detect malaria at a very early stage of its development by looking for fatty acids in the parasite and could dramatically reduce the number of people who die from the disease.

Scientists at Monash University (Clayton, VIC, Australia) maintained cultured Plasmodium falciparum parasites synchronized to ring stages by sorbitol lysis. High parasitemia ring-stage cultures were obtained by seeding uninfected red blood cells with purified schizont-stage parasites that were allowed to reinvade under shaking conditions overnight, reducing multiple infections.

The method to rapidly detect and quantify different stages of malaria parasites, including ring and gametocyte forms, used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) and partial least-squares regression (PLS). A Bruker model Equinox 55 (Bruker Optic; Ettingen, Germany) FT-IR spectrometer fitted with a nitrogen-cooled mercury–cadmium–telluride (MCT) detector and a golden gate diamond ATR accessory (Specac Limited; Orpington, UK) was used for spectral acquisition. ATR-FTIR utilizes infrared light to detect the vibrations of molecules and essentially depicts the entire chemistry of the system under investigation.

The scientists already knew that fatty acids were a marker for the disease from previous studies at the Australian Synchrotron. The Synchrotron allowed the team to see the different life stages of the parasite and the variation in its fatty acids. They then applied these insights to develop an inexpensive laboratory based test that has the potential to be portable. The results confirmed the ability of ATR-FT-IR to detect parasitaemia levels down to 0.00001%.

Bayden R. Wood, PhD, the senior author of the study, said, “Not only did the test give clear results within minutes, it gave a clear indication of malaria at a much earlier stage of infection than current tests on the market. Now that we can detect the early stages of a parasite's life in the blood stream the disease will be much easier to test and treat. The big advantage of our test is that it doesn't need scientists and expensive equipment. This has the potential to dramatically reduce the number of people dying from this disease in remote communities.” The study was published on April 2, 2014, in the journal Analytical Chemistry.

Related Links:

Monash University
Bruker Optic
Specac Limited



VIRCELL
ADVANCED INSTRUMENTS
DiagCor Bioscience
comments powered by Disqus
Life Technologies

Channels

Genetic Tests

view channel
Image: Histopathology of a hepatoblastoma, a type of liver cancer found in infants and young children (Photo courtesy of Nephron).

Gene Identified That Promotes Childhood Cancers

A gene has been identified that contributes to the development of several childhood cancers and this could lead to new strategies for targeting certain childhood cancers at a molecular level.... Read more

Immunology

view channel
Image: The Zinc Transporter 8 Autoantibody (ZnT8Ab) enzyme-linked immunosorbent assay (ELISA) kit (Photo courtesy of KRONUS).

Autoantibody Test Helps Diagnose Type 1 Diabetes

The first zinc transporter 8 autoantibody (ZnT8Ab) test has been approved for marketing and the test can help determine if a person has diabetes mellitus type 1 and not another type of diabetes.... Read more

Industry News

view channel

First European Company Obtains CE-IVD Marking for Next Generation Sequencing in Routine Testing

For the first time, a European company, Sophia Genetics (Lausanne Switzerland), has obtained the CE-IVD mark for clinical use of Next Generation Sequencing (NGS) bioinformatics pipeline for routine genetic testing. Sophia Genetics received this CE-IVD mark shortly after receiving ISO 13485 accreditation.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.