Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
GLOBETECH PUBLISHING

Infrared Light Detects and Quantifies Malaria Parasites

By Labmedica International staff writers
Posted on 08 May 2014
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
Image: The Bruker Equinox 55 Fourier transform infrared spectrometer (Photo courtesy of Vienna University of Technology).
A novel way to detect malaria, one of the most common and deadly diseases in the world, that also quantifies the early stage parasites, has been developed.

The quick and inexpensive test uses infrared light to detect malaria at a very early stage of its development by looking for fatty acids in the parasite and could dramatically reduce the number of people who die from the disease.

Scientists at Monash University (Clayton, VIC, Australia) maintained cultured Plasmodium falciparum parasites synchronized to ring stages by sorbitol lysis. High parasitemia ring-stage cultures were obtained by seeding uninfected red blood cells with purified schizont-stage parasites that were allowed to reinvade under shaking conditions overnight, reducing multiple infections.

The method to rapidly detect and quantify different stages of malaria parasites, including ring and gametocyte forms, used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) and partial least-squares regression (PLS). A Bruker model Equinox 55 (Bruker Optic; Ettingen, Germany) FT-IR spectrometer fitted with a nitrogen-cooled mercury–cadmium–telluride (MCT) detector and a golden gate diamond ATR accessory (Specac Limited; Orpington, UK) was used for spectral acquisition. ATR-FTIR utilizes infrared light to detect the vibrations of molecules and essentially depicts the entire chemistry of the system under investigation.

The scientists already knew that fatty acids were a marker for the disease from previous studies at the Australian Synchrotron. The Synchrotron allowed the team to see the different life stages of the parasite and the variation in its fatty acids. They then applied these insights to develop an inexpensive laboratory based test that has the potential to be portable. The results confirmed the ability of ATR-FT-IR to detect parasitaemia levels down to 0.00001%.

Bayden R. Wood, PhD, the senior author of the study, said, “Not only did the test give clear results within minutes, it gave a clear indication of malaria at a much earlier stage of infection than current tests on the market. Now that we can detect the early stages of a parasite's life in the blood stream the disease will be much easier to test and treat. The big advantage of our test is that it doesn't need scientists and expensive equipment. This has the potential to dramatically reduce the number of people dying from this disease in remote communities.” The study was published on April 2, 2014, in the journal Analytical Chemistry.

Related Links:

Monash University
Bruker Optic
Specac Limited



EUROIMMUN AG
Sekisui Diagnostics
PURITAN MEDICAL
comments powered by Disqus
Life Technologies

Channels

Clinical Chemistry

view channel
Image: Enzyme-linked immunosorbent kit (ELISA) specific for human copeptin (Photo courtesy of USCN Life Science).

Preeclampsia Biomarker Detected Very Early In Pregnancy

A biomarker has been discovered that could give expecting mothers and their doctors the first simple blood test to reliably predict that a pregnant woman may develop preeclampsia, at least as early as... Read more

Pathology

view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

Brain Tumor Chemotherapy Biomarkers Identified

Cancer researchers have identified a new biomarker that they believe can predict whether glioblastoma multiformes (GBMs), the most common and aggressive type of malignant brain tumor, will be susceptible... Read more

Industry News

view channel

Beckman Coulter Acquires Siemens Healthcare Diagnostics’ Clinical Microbiology Business

Beckman Coulter (Brea, CA, USA), an indirect wholly-owned subsidiary of Danaher Corp. (Washington DC, MD, USA) has entered into a definitive agreement to purchase the clinical microbiology business of Siemens Healthcare Diagnostics (Chicago, IL, USA). The transaction is expected to close in the first quarter of 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.