Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
GLOBETECH PUBLISHING
RANDOX LABORATORIES

Solution Found for Mislabeled Specimens in Clinical Laboratories

By Labmedica International staff writers
Posted on 30 Apr 2014
Image: An automated camera system developed for photographing specimen tube exteriors for vision processing and optical character recognition analysis to detect possible mislabeled specimens (Photo courtesy of ARUP laboratories).
Image: An automated camera system developed for photographing specimen tube exteriors for vision processing and optical character recognition analysis to detect possible mislabeled specimens (Photo courtesy of ARUP laboratories).
The incidence of patient identification errors, including mislabeled and misidentified specimens, is thought to be unacceptably high in clinical laboratories.

The best data on errors in USA laboratories is derived from three separate College of American Pathologists (CAP; Northfield, IL, USA) Q-Probe studies, in which the reported rates of mislabeled specimens were 0.39/1,000 in 120 institutions in 2006, 0.92/1,000 in 147 clinical laboratories in 2008, and 1.12% of blood bank specimens in 122 clinical laboratories.

Laboratory scientists at the ARUP Laboratories (Salt Lake City, UT, USA) have examined the problem of misidentification and have suggested some possible solutions. One approach is the single piece flow and this concept has significant error-proofing potential for labeling tasks at relatively low cost. They suggest that to prevent errors during collection and processing, avoid having specimens from multiple patients in the active work area at the same time. Similarly, avoid using strips of labels from a label printer with labels for multiple patients that must be matched to specimens and if using an automated aliquoting device, be sure that the label exactly duplicates the barcode label from the primary tube to facilitate error detection.

Another tool that more laboratories are using is the portable barcode scanner. These scanners read wristband barcodes at point-of-collection and work well in conjunction with portable barcode label printers or point-of-care analytical devices. However, barcode devices make more errors than commonly believed. Display and layout inconsistency of the barcode can also leads to an increase in errors. It is recommended to implement the Clinical and Laboratory Standards Institute (Wayne, PA, USA) Standard AUTO12-A, Specimen Labels: Content and Location, Fonts, and Label Orientation.

The scientists have invented one high tech solution that they believe will bring their own error rate for mislabeled specimens to near zero and which, with further refinement, may become suitable for use on commercial automation systems. This is a robotic camera system that can lift a specimen tube from the transport carrier on an automated track, take four simultaneous photographs of the tube using four equidistantly spaced high resolution cameras, and precisely stitch the four photographs into a single photograph of the entire exterior of the tube. It then uses optical character recognition (OCR) to compare the patient name on the original label to the patient name in the laboratory information system (LIS), as identified by reading the barcode on the LIS label.

Since the robotic system was implemented in October 2012, the system has collected and analyzed some 2.4 million images and more than 300 mislabeled specimens have been detected, of which only 53% were found through our normal quality assurance processes. For the subset of specimens routed through this advanced automation, significantly fewer corrected reports have been issued.

Related Links:
College of American Pathologists
ARUP Laboratories 
Clinical and Laboratory Standards Institute



EUROIMMUN AG
PURITAN MEDICAL
Sekisui Diagnostics
comments powered by Disqus
Life Technologies

Channels

Clinical Chemistry

view channel
Image: Enzyme-linked immunosorbent kit (ELISA) specific for human copeptin (Photo courtesy of USCN Life Science).

Preeclampsia Biomarker Detected Very Early In Pregnancy

A biomarker has been discovered that could give expecting mothers and their doctors the first simple blood test to reliably predict that a pregnant woman may develop preeclampsia, at least as early as... Read more

Pathology

view channel
Image: Glioblastoma multiforme (GBM) (Photo courtesy of the University of California, San Diego School of Medicine).

Brain Tumor Chemotherapy Biomarkers Identified

Cancer researchers have identified a new biomarker that they believe can predict whether glioblastoma multiformes (GBMs), the most common and aggressive type of malignant brain tumor, will be susceptible... Read more

Industry News

view channel

EKF Wins Distribution Contract and Regulatory Approval for Target Regions

EKF Diagnostics Holdings (Cardiff, Wales, UK), an AIM-listed point-of-care, central laboratory and molecular diagnostics business, announced that it has signed a new distribution contract in China and that one of its OEM (original equipment manufacturer) partners has received further regulatory approval across several target... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.