Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
AB Sciex

Bacteria-Based Test Strips Can Monitor Blood Glucose

By Labmedica International staff writers
Posted on 26 Jan 2012
Segments of DNA embedded in bacteria can be coded to detect changes in osmolarity resulting from the presence of glucose in a blood sample.

Students at the Missouri University of Science and Technology (MST, Rolla, USA) used a nonvirulent strain of E.coli with designed genes integrated in the bacteria’s DNA, enabling them to sense the presence of glucose in correlation to changes in osmolarity. When glucose is detected, the bacteria emit a yellow glow, and as its concentration rises, so does the light emitted glow brighter. The system might also eventually serve as the basis for a new method to monitor blood glucose levels by replacing the fluorescent gene with one that would make the bacteria change color, based on glucose concentrations.

To make the device, the students used an intermediate biobrick with a ribosome-binding site and the reporter gene (eYFP), which was then coupled to another biobrick that had three binding sites for the transcriptional regulatory protein phosphorylated OmpR. The phosphorlyation of OmpR by EnvZ (an inner membrane protein that senses osmolarity) positively correlated with the osmolarity of the system. When one or two of the binding sites are occupied, RNA polymerase is recruited to begin downstream transcription of eYFP. However, when all three OmpR binding sites are occupied, RNA polymerase cannot bind, the reporter gene can no longer be produced, and the system is inhibited.

As osmolarity increases from very low levels, the fluorescence produced by the system increases, until it reaches a threshold osmolarity level that when crossed causes the fluorescence to decrease as a result of the ensuing inherent down-regulation of the system. The activity of the system can be quantified because the two-component regulatory system of EnvZ and OmpR controls transcription of the eYFP gene, dictating the level of fluorescence.

“All you would have to do is put the DNA inside a bacteria and you've got your test strip,” said Erica Shannon, a senior year student in biological sciences at MST. “In the future, based on further research, an insulin gene could be added to this system for use in insulin pumps, where specific glucose levels trigger insulin production.”

The project was developed the system as part of an annual competition sponsored by the International Genetically Engineered Machine Foundation (iGEM; Boston, MA, USA) held during October 2011, in Indianapolis (IN, USA); the MST iGEM chapter received a silver medal for their effort.

Related Links:

Missouri University of Science and Technology
International Genetically Engineered Machine Foundation




DiagCor Bioscience
ADVANCED INSTRUMENTS
VIRCELL
comments powered by Disqus
Life Technologies

Channels

Immunology

view channel
Image: The Zinc Transporter 8 Autoantibody (ZnT8Ab) enzyme-linked immunosorbent assay (ELISA) kit (Photo courtesy of KRONUS).

Autoantibody Test Helps Diagnose Type 1 Diabetes

The first zinc transporter 8 autoantibody (ZnT8Ab) test has been approved for marketing and the test can help determine if a person has diabetes mellitus type 1 and not another type of diabetes.... Read more

Industry News

view channel

First European Company Obtains CE-IVD Marking for Next Generation Sequencing in Routine Testing

For the first time, a European company, Sophia Genetics (Lausanne Switzerland), has obtained the CE-IVD mark for clinical use of Next Generation Sequencing (NGS) bioinformatics pipeline for routine genetic testing. Sophia Genetics received this CE-IVD mark shortly after receiving ISO 13485 accreditation.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.