Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
RANDOX LABORATORIES
Biostrata Ltd on behalf of Thermo

Smart Petri Dish Simplifies Medical Diagnostic Tests

By Labmedica International staff writers
Posted on 13 Oct 2011
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
A smart Petri dish does away with the need for bulky microscopes and significantly reduces human labor time, while improving the way in which bacterial culture growth can be recorded.

Imaging sensor chips, similar to those in built-in cameras of cell phones, transform the way cell cultures are imaged by serving as a platform for the smart Petri dish. The device, dubbed ePetri, was built by engineers at the California Institute of Technology (Caltech; Pasadena, CA, USA) using a Google smart phone, a commercially available cell-phone image sensor, and Lego building blocks.

The culture is placed on the image-sensor chip, while the phone's LED screen is used as a scanning light source. The device is placed in an incubator with a wire running from the chip to a laptop outside the incubator. As the image sensor takes pictures of the culture, the information is sent out to the laptop, enabling scientists to acquire and save images of the cells as they are growing in real time. The technology is particularly useful for imaging confluent cells--those that grow very close to one another and typically cover the entire Petri dish.

Biologists use Petri dishes primarily to grow cells. In the medical field, they are used to identify bacterial infections, such as tuberculosis. Conventional use of a Petri dish requires that the cells being cultured be placed in an incubator to grow. As the sample grows, it is removed--often numerous times--from the incubator to be studied under a microscope.

"Our ePetri dish is a compact, small, lens-free microscopy imaging platform. We can directly track the cell culture or bacteria culture within the incubator," explained Guoan Zheng, lead author of the study and a graduate student in electrical engineering at Caltech. "The data from the ePetri dish automatically transfers to a computer outside the incubator by a cable connection. Therefore, this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks."

Changhuei Yang, senior author of the study and professor of electrical engineering and bioengineering at Caltech, and his team believe that the ePetri system will open up a whole range of new approaches to many other biological systems. For example, ePetri could provide microscopy-imaging capabilities for other portable diagnostic lab-on-a-chip tools.

The team is working to build a self-contained system that would include its own small incubator. This would make the system more useful as a desktop diagnostic tool that could be housed in a doctor's office, reducing the need to send bacteria samples out to a lab for testing.

The device is described in a paper that appears online in the Proceedings of the National Academy of Sciences (PNAS) in September 2011.

Related Links:
California Institute of Technology




DIASYS DIAGNOSTIC SYSTEMS
EUROIMMUN AG
KARL HECHT GMBH & CO KG
WATERS CORPORATION

Channels

Genetic Tests

view channel
Image: The fully automated nCounter Analysis System (Photo courtesy of NanoString Technologies).

Blood Signature Analysis Helps Diagnose Parkinson’s Disease Earlier

The diagnosis of Parkinson's is usually not established until advanced neurodegeneration leads to clinically detectable symptoms involving the malfunction and death of vital nerve cells in the brain.... Read more

Pathology

view channel
Image: The cobas KRAS mutation real-time polymerase chain reaction test (Photo courtesy of Roche).

KRAS Mutation Test for Colorectal Cancer Diagnosis Approved

A real-time polymerase chain reaction test has been designed to identify the Kirsten rat sarcoma viral oncogene (KRAS) mutations in tumor samples from metastatic colorectal cancer (mCRC) patients and aid... Read more

Industry News

view channel

Main Factors Driving Revenue Growth in Clinical Chemistry Identified

According to a report by Kalorama Information (New York, NY, USA), overall growth in the clinical chemistry market will be modest, driven mainly by new tests and demographic changes, including an aging population and increasing number of people at risk of cardiovascular disease, such as those with hypertension, diabetes... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.