Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
GLOBETECH PUBLISHING LLC
FOCUS DIAGNOSTICS, INC.

Smart Petri Dish Simplifies Medical Diagnostic Tests

By Labmedica International staff writers
Posted on 13 Oct 2011
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
Image: The ePetri platform is built from Lego blocks and uses a smart phone as a light source. The imaging chip is seen in detail on the right (Photo courtesy of Guoan Zheng, Caltech).
A smart Petri dish does away with the need for bulky microscopes and significantly reduces human labor time, while improving the way in which bacterial culture growth can be recorded.

Imaging sensor chips, similar to those in built-in cameras of cell phones, transform the way cell cultures are imaged by serving as a platform for the smart Petri dish. The device, dubbed ePetri, was built by engineers at the California Institute of Technology (Caltech; Pasadena, CA, USA) using a Google smart phone, a commercially available cell-phone image sensor, and Lego building blocks.

The culture is placed on the image-sensor chip, while the phone's LED screen is used as a scanning light source. The device is placed in an incubator with a wire running from the chip to a laptop outside the incubator. As the image sensor takes pictures of the culture, the information is sent out to the laptop, enabling scientists to acquire and save images of the cells as they are growing in real time. The technology is particularly useful for imaging confluent cells--those that grow very close to one another and typically cover the entire Petri dish.

Biologists use Petri dishes primarily to grow cells. In the medical field, they are used to identify bacterial infections, such as tuberculosis. Conventional use of a Petri dish requires that the cells being cultured be placed in an incubator to grow. As the sample grows, it is removed--often numerous times--from the incubator to be studied under a microscope.

"Our ePetri dish is a compact, small, lens-free microscopy imaging platform. We can directly track the cell culture or bacteria culture within the incubator," explained Guoan Zheng, lead author of the study and a graduate student in electrical engineering at Caltech. "The data from the ePetri dish automatically transfers to a computer outside the incubator by a cable connection. Therefore, this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks."

Changhuei Yang, senior author of the study and professor of electrical engineering and bioengineering at Caltech, and his team believe that the ePetri system will open up a whole range of new approaches to many other biological systems. For example, ePetri could provide microscopy-imaging capabilities for other portable diagnostic lab-on-a-chip tools.

The team is working to build a self-contained system that would include its own small incubator. This would make the system more useful as a desktop diagnostic tool that could be housed in a doctor's office, reducing the need to send bacteria samples out to a lab for testing.

The device is described in a paper that appears online in the Proceedings of the National Academy of Sciences (PNAS) in September 2011.

Related Links:
California Institute of Technology




KARL HECHT GMBH & CO KG
CELLAVISION AB
MEDLAB Asia
PERIPHERAL VISIONS INC

Channels

Clinical Chemistry

view channel
Image: UniCel DxC 800 Synchron Clinical Systems (Photo courtesy of Beckman Coulter).

Routine Blood Glucose Value Correlates with Diabetes Risk

Random glucose values obtained during routine blood tests are often overlooked, but could provide valuable insight into whether someone is at risk for having type 2 diabetes. Random Blood Glucose (RBG)... Read more

Genetic Tests

view channel
Image: Histopathology of tuberculoid leprosy in a skin section (Photo courtesy Dr. D.S. Ridley, Wellcome Images).

Genes Discovered Influence Risk of Developing Leprosy

Leprosy, a chronic dermatological and neurological disease, is caused by infection with Mycobacterium leprae, and its manifestation, progression and prognosis are strongly associated with the proficiency... Read more

Hematology

view channel
Image: Plastic bag containing 0.5 to 0.7 liters of packed red blood cells in citrate, phosphate, dextrose, and adenine (CPDA) solution (Photo courtesy of Fresenius HemoCare).

Transfusion Protocols Compared After Cardiac Surgery

Unnecessary blood transfusions may increase healthcare costs both directly, because blood is an increasingly scarce and expensive resource, and indirectly due to the complications associated with transfusion.... Read more

Industry News

view channel

Sequencing-Based Testing Sector Already Highly Competitive

As next-generation sequencing (NGS) reaches the clinical laboratory, a new analysis by Kalorama Information (New York, NY, USA) finds that small reference laboratories as well as over 50 companies now offer sequencing-based testing through their own CLIA-certified laboratories, some of which offer a wide range of tests.... Read more
 

Events

06 Apr 2015 - 08 Apr 2015
07 Apr 2015 - 09 Apr 2015
13 Apr 2015 - 16 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.