We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Electrical Immunosensor Detects Acute Myocardial Infarction

By LabMedica International staff writers
Posted on 25 Aug 2016
Print article
Image: The core material used for the new immunosensor that detects proteins in the blood stream following a heart attack, providing results in just one minute (Photo courtesy of Ulsan National Institute of Science and Technology).
Image: The core material used for the new immunosensor that detects proteins in the blood stream following a heart attack, providing results in just one minute (Photo courtesy of Ulsan National Institute of Science and Technology).
Heart disease and especially acute myocardial infarction (AMI) are the leading causes of death for both men and women and therefore, a fast and reliable diagnosis of heart attack or cardiac episode are urgently needed.

The most commonly used biomarkers are creatine kinase-MB, myoglobin, cardiac troponin T, and cardiac troponin I (cTnI), which is a subunit of the troponin complex found in cardiac muscle and is a highly specific and sensitive biomarker for the clinical diagnosis of AMI.

Biomedical engineers at Ulsan National Institute of Science and Technology (South Korea) developed a new sensor for early detection of heart attack in humans. The apparatus comprises of rapid, label-free, and highly sensitive single-walled carbon nanotube (SWCNT) electrical immunosensor, featuring two pairs of electrodes. The system works by measuring the level of cardiac troponin I (cTnI), a protein that is excreted by the heart muscle into the blood following a heart attack.

The two concentration electrodes were imbedded between upper and lower dielectric layers, facing each other, underneath the -COOH-functionalized SWCNT channels deposited between the detection electrodes. Therefore, the gap between these imbedded concentration electrodes can be reduced to maximize the electric field intensity for dielectrophoresis (DEP)-mediated concentration of cTnI, thereby greatly reducing the detection time to one minute and enhancing the limit of detection (0.7–0.8 pg/mL). Fluorescence images were acquired using an Eclipse 80i epifluorescence microscope (Nikon, Tokyo, Japan).

The authors concluded that their immunosensor demonstrated high selectivity for cTnI over myoglobin, Tris-Borate-EDTA (TBE), and human serum. Therefore, the novel immunosensor presented holds considerable potential for use as a platform for sensing distinct types of proteins, along with the feasibility of miniaturization and integration for biomedical diagnosis. The study was published in the August 2016 issue of the journal Biosensors & Bioelectronics.

Related Links:
Ulsan National Institute of Science and Technology
Nikon
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.