We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Electrical Immunosensor Detects Acute Myocardial Infarction

By LabMedica International staff writers
Posted on 25 Aug 2016
Heart disease and especially acute myocardial infarction (AMI) are the leading causes of death for both men and women and therefore, a fast and reliable diagnosis of heart attack or cardiac episode are urgently needed.

The most commonly used biomarkers are creatine kinase-MB, myoglobin, cardiac troponin T, and cardiac troponin I (cTnI), which is a subunit of the troponin complex found in cardiac muscle and is a highly specific and sensitive biomarker for the clinical diagnosis of AMI.

Biomedical engineers at Ulsan National Institute of Science and Technology (South Korea) developed a new sensor for early detection of heart attack in humans. More...
The apparatus comprises of rapid, label-free, and highly sensitive single-walled carbon nanotube (SWCNT) electrical immunosensor, featuring two pairs of electrodes. The system works by measuring the level of cardiac troponin I (cTnI), a protein that is excreted by the heart muscle into the blood following a heart attack.

The two concentration electrodes were imbedded between upper and lower dielectric layers, facing each other, underneath the -COOH-functionalized SWCNT channels deposited between the detection electrodes. Therefore, the gap between these imbedded concentration electrodes can be reduced to maximize the electric field intensity for dielectrophoresis (DEP)-mediated concentration of cTnI, thereby greatly reducing the detection time to one minute and enhancing the limit of detection (0.7–0.8 pg/mL). Fluorescence images were acquired using an Eclipse 80i epifluorescence microscope (Nikon, Tokyo, Japan).

The authors concluded that their immunosensor demonstrated high selectivity for cTnI over myoglobin, Tris-Borate-EDTA (TBE), and human serum. Therefore, the novel immunosensor presented holds considerable potential for use as a platform for sensing distinct types of proteins, along with the feasibility of miniaturization and integration for biomedical diagnosis. The study was published in the August 2016 issue of the journal Biosensors & Bioelectronics.

Related Links:
Ulsan National Institute of Science and Technology
Nikon

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.