We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biochip Combines Graphene Electronics and DNA Strand Displacement for Detection of Polymorphism Mutations

By LabMedica International staff writers
Posted on 05 Jul 2016
Print article
Image: The biosensor chip - consisting of a double stranded DNA probe embedded onto a graphene transistor - electronically detects DNA SNPs (Photo courtesy of the University of California, San Diego).
Image: The biosensor chip - consisting of a double stranded DNA probe embedded onto a graphene transistor - electronically detects DNA SNPs (Photo courtesy of the University of California, San Diego).
A team of bioengineers has designed an electronic biochip with potential applications for personalized medicine that can detect DNA mutations caused by single nucleotide polymorphisms (SNPs) in real time.

SNPs, which are variations of a single nucleotide base, in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. However, current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness.

In an effort to improve the accuracy and specificity of SNP detection, investigators at the University of California, San Diego (USA) combined dynamic DNA nanotechnology with high resolution electronic sensing in the form of a double stranded DNA probe embedded onto a graphene field effect transistor (FET).

The detection method was based on the displacement of a weakly bound DNA double strand by one containing a specific SNP. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change in the graphene transistor. Use of large double-helix DNA strands (up to 47 bases) improved the accuracy of SNP detection by minimizing false-positive results.

“A single stranded DNA probe does not provide this selectivity - even a DNA strand containing one mismatching nucleotide base can bind to the probe and generate false-positive results,” said senior author Dr. Ratnesh Lal, professor of bioengineering, mechanical engineering, and materials science at the University of California, San Diego. “We expected that with a longer probe, we can develop a reliable sequence-specific SNP detection chip. Indeed, we have achieved a high level of sensitivity and specificity with the technology we have developed.”

“We are at the forefront of developing a fast and inexpensive digital method to detect gene mutations at high resolution—on the scale of a single nucleotide change in a nucleic acid sequence,” said Dr. Lal.

The SNP biosensor probe was described in detail in the June 13, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
University of California, San Diego


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.