We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Multiple Diseases Detected via DNA Released from Dying Cells

By LabMedica International staff writers
Posted on 30 Mar 2016
Print article
Image: Schematic diagram of circulating methylated cell free DNA (Photo courtesy of Huntsman Cancer Institute).
Image: Schematic diagram of circulating methylated cell free DNA (Photo courtesy of Huntsman Cancer Institute).
A blood test has been developed that can detect multiple pathologies, including diabetes, cancer, traumatic injury and neurodegeneration, in a highly sensitive and specific manner. The novel method infers cell death in specific tissue from the methylation patterns of circulating DNA that is released by dying cells.

Cell death is a central feature of human biology in health and disease. It can signify the early stages of pathology; such as a developing tumor or the beginning of an autoimmune or neurodegenerative disease, mark disease progression, reflects the success of identify unintended toxic effects of treatment and more. However, to date, it is not possible to measure cell death in specific human tissues noninvasively.

An international team of scientists led by those at the Hebrew University-Hadassah Medical School (Jerusalem, Israel) developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cell free DNA (cfDNA). They interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. They isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, polymerase chain reaction (PCR)-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest.

They were able to detect evidence for pancreatic beta-cell death in the blood of patients with new-onset type 1 diabetes, oligodendrocyte death in patients with relapsing multiple sclerosis, brain cell death in patients after traumatic or ischemic brain damage, and exocrine pancreas cell death in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrated that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

Ruth Shemer, PhD, a DNA methylation expert and one of the lead authors of the study, said, “Our work demonstrates that the tissue origins of circulating DNA can be measured in humans. This represents a new method for sensitive detection of cell death in specific tissues, and an exciting approach for diagnostic medicine.” The study was published on March 14, 2016, in the journal Proceedings of National Academy of Sciences of the United States of America (PNAS).

Related Links:

Hebrew University-Hadassah Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.