We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Optical Device Rapidly Detects Biomarkers in Urine

By LabMedica International staff writers
Posted on 22 Mar 2016
A compact optical device has been developed that can rapidly and sensitively detect biomarkers in urine and has promise for developing simple point-of-care diagnostics of cancer and other diseases. More...


Micro ribonucleic acids (miRNAs) are a newly discovered class of short, about 19 to 24 nucleotides in length, fragments of noncoding RNAs that are useful biomarkers for diagnosing various diseases, including cardiac disease and some cancers. Since they are surprisingly well preserved in fluids such as urine and blood, their detection is well suited to a rapid, point-of-care method.

Bioengineers at the Agency for Science, Technology and Research (Singapore) have devised a silicon photonic biosensor that can detect tiny changes in the phase of a light beam caused by hybridization between an immobilized DNA probe and target miRNAs in a sample. A laser beam travels through a waveguide, which splits into two arms: a sensing arm in which the light interacts with the sample and a reference arm. The two light beams then rejoin each other. Binding between the DNA probe and the target miRNA alters the phase of the light traveling in the sensing arm, whereas the phase in the reference arm remains unchanged. The amount of target miRNA in the sample can be determined by monitoring the variation in the intensity of the output beam.

To demonstrate the system, the team used it to detect two types of miRNAs in urine samples from three patients with late-stage bladder cancer; the tests involved a single reaction and took 15 minutes. The microRNA levels of the patients differed markedly from those of two healthy subjects. Mach–Zehnder interferometer (MZI) biosensor was fabricated using standard complementary metal-oxide-semiconductor (CMOS) processes. For the optical characterization of the MZI sensor, the light coming from a TSL-510 tunable laser (Santec; Komaki, Japan) at a wavelength 1,562 nm passes through a polarization controller and a fiber pigtailed collimator.

Mi Kyoung Park, PhD, the principal investigator, said, “Existing methods to detect microRNAs are time consuming and require cumbersome machines, which limit their usefulness in clinical settings. This inspired us to develop a simple and efficient point-of-care device for detecting microRNAs. The device is also highly sensitive and thus does not require labeling or amplification; it can deliver results within 15 minutes, eliminating the need for patients to return for their results; and it can potentially detect up to 16 targets in a single test.” The study was originally published in the September 2015 issue of the journal Biosensors and Bioelectronics.

Related Links:

Agency for Science, Technology and Research
Santec



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.