We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Electrochemical Test Rapidly Detects Infection in Wounds

By LabMedica International staff writers
Posted on 15 Feb 2016
A new study describes a method for testing bacteria in wounds that could lead to lower health care costs and improved patient outcomes. More...


Researchers at George Washington University (GW; Washington DC, USA), Northeastern University (Boston, MA, USA), and other institutions have developed an inexpensive, disposable electrochemical sensor that detects pyocyanin, a unique, redox-active molecule released by Pseudomonas aeruginosa in chronic wound fluids. By directly measuring the metabolite, the electrochemical test eliminates sample preparation, takes less than a minute to complete, and requires only 7.5 microliters of fluid to complete the analysis.

A study to compare the electrochemical results against rRNA profiling yielded nine correct matches, two false negatives, and three false positives, giving a sensitivity of 71% and a specificity of 57% for detection of P. aeruginosa. After further enhancement, the methodology could potentially provide a way to detect wound infections at the bedside, allowing physicians to switch from broad-spectrum antibiotics to specific directed therapies sooner, thus lowering health care costs, minimizing drug resistance, and improving patient care outcomes. The study was published on January 27, 2016, in Wound Repair and Regeneration.

“Being able to detect Pseudomonas and other infectious organisms at the time of the clinic visit will greatly enhance our ability to take care of patients,” said lead author Victoria Shanmugam, MD, director of the division of rheumatology at the GW School of Medicine and Health Sciences. “We would not have to wait for culture results before making a decision about antibiotics, and this would allow us to better tailor therapies for our patients.”

P. aeruginosa is a common Gram-negative bacterium that is recognized for its intrinsically advanced antibiotic resistance mechanisms and its association with serious illnesses, especially nosocomial infections such as ventilator-associated pneumonia (VAP) and sepsis syndromes. In all infections produced by P. aeruginosa, treatment is dually complicated by the organism's resistance profile, which may lead to treatment failure and expose patients to untoward adverse effects resulting from advanced antibiotic drug regimens.

Related Links:

George Washington University
Northeastern University



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.