We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Dermatopathology Specimens Examined by Smartphone-Based Microscopy

By LabMedica International staff writers
Posted on 01 Feb 2016
Print article
Image: Phone microscopy slide reading: the technique for reading a slide using the ball-lens phone microscope with a single light-emitting diode (LED) flashlight providing illumination (Photo courtesy of University of Texas Houston Health Science).
Image: Phone microscopy slide reading: the technique for reading a slide using the ball-lens phone microscope with a single light-emitting diode (LED) flashlight providing illumination (Photo courtesy of University of Texas Houston Health Science).
The incorporation of high-resolution cameras into smartphones has allowed for a variety of medical applications including the use of lens attachments that provide telescopic, macroscopic, and dermatoscopic data.

Skin biopsy and the pathologic information that it provides is foundational to the diagnosis and management of dermatologic disease. However, a lack of expertise in dermatopathologic-specimen interpretation in resource-poor areas may impede timely diagnosis and treatment.

Pathologists at the University of Texas Houston Health Science Center (TX, USA) and their collaborators constructed a mobile phone microscope by using a modified method and a 3-mm-diameter sapphire ball lens purchased from Edmund Optics (Barrington, NJ, USA). A total of 1,130 consecutive dermatopathology specimens from mostly community dermatologists were evaluated. The performance characteristics of the smartphone platform were calculated by using conventional light microscopy as the gold standard. The sensitivity and specificity for the diagnosis of melanoma, non-melanoma skin cancers, and other miscellaneous conditions by the phone microscopy platform, as compared with traditional light microscopy, were calculated.

All excisional 101 specimens were excluded because the diagnosis was previously established. Among the 1,021 specimens, 930 (91.1%) were shave biopsies and 91 (8.9%) were punch biopsies from 763 different patients. For 136 basal cell carcinoma cases, the sensitivity and specificity of smartphone microscopy were 95.6% and 98.1%, respectively. The sensitivity and specificity for 94 squamous cell carcinoma cases were 89.4% and 97.3%, respectively. The lowest sensitivity was found in the 15 melanomas at 60%, although the specificity was high at 99.1%. The accuracy of diagnosis of inflammatory conditions and other neoplasms was variable.

The authors concluded that their study demonstrated the potential for a high-performing, low-cost smartphone microscopy system in the diagnosis of cutaneous disease. Studies with larger sample sizes of pigmented lesions, non-melanoma skin cancer (NMSC) subtypes, and dermatologic infections could help improve this modality for point-of-care diagnostics in resource-poor settings. The study was published in the January 2016 issue of the journal Archives of Pathology & Laboratory Medicine.

Related Links:

University of Texas Houston Health Science 
Edmund Optics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.