We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Ultrasensitive Assay Detects Asymptomatic Low-Density Malaria

By LabMedica International staff writers
Posted on 06 Jan 2016
Print article
Image: Photomicrograph of a peripheral blood smear showing schizonts and trophozoite stages of Plasmodium falciparum (Photo courtesy of Chiang Mai University).
Image: Photomicrograph of a peripheral blood smear showing schizonts and trophozoite stages of Plasmodium falciparum (Photo courtesy of Chiang Mai University).
Highly sensitive, scalable diagnostic methods are needed to guide malaria elimination interventions and while traditional microscopy and rapid diagnostic tests (RDTs) are suitable for the diagnosis of symptomatic malaria infection, more sensitive tests are needed to screen for low-density, asymptomatic infections.

An improved assay has been developed to detect both ribosomal ribonucleic acid (RNA) and DNA, thus taking advantage of the high copy numbers of RNA in small blood volumes, using a stabilizing reagent that allows preservation of nucleic acids from small volumes of blood suitable for collection by finger or ear stick, with minimal sample processing, and no cold chain.

Scientists at the University of Maryland School of Medicine (Baltimore, MD, USA) and their colleagues collected blood samples across three townships in Southeastern Myanmar. Blood collected by finger stick was used to perform Malaria Ag P.f/Pv, RDTs (Standard Diagnostics; Yongin-si, Republic of Korea) on site, and 0.3 mL of blood was placed into collection tubes. Total nucleic acid was extracted from 200 μL of blood/stabilizer mixture using the QIAamp 96 DNA Blood Kit (Qiagen; Valencia, CA, USA) but with an elution volume of 50 µL of buffer.

A reverse transcription polymerase chain reaction (RT- PCR) was developed for multiplexed detection of the 18S ribosomal RNA gene and ribosomal RNA of Plasmodium falciparum and Plasmodium vivax. Simulated field samples stored for 14 days with sample preservation buffer were used to assess the analytical sensitivity and specificity. Additionally, 1,750 field samples from Southeastern Myanmar were tested both by RDT and ultrasensitive RT-PCR, which was performed on a Roche Lightcycler 96 or 480 real time PCR machine (Roche Diagnostics; Indianapolis, IN, USA).

The limits of detection (LoD) were determined under simulated field condition and was found to be was less than 16 parasites/mL for P. falciparum and 19.7 copies/µL for P. vivax (using a plasmid surrogate), about 10,000-fold lower than RDTs. Of the 1,739 samples successfully evaluated by both ultrasensitive RT-PCR and RDT, only two were RDT positive while 24 were positive for P. falciparum, 108 were positive for P. vivax, and 127 were positive for either P. vivax and/or P. falciparum using ultrasensitive RT-PCR.

The authors concluded that the ultrasensitive RT-PCR method is a robust, field-tested screening method that is vastly more sensitive than RDTs. Further optimization may result in a truly scalable tool suitable for widespread surveillance of low-level asymptomatic P. falciparum and P. vivax parasitemia. The study was published on December 23, 2015, in the Malaria Journal.

Related Links:

University of Maryland School of Medicine
Standard Diagnostics 
Qiagen



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.