We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Integrated Device Combines Techniques to Detect Malaria

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: The paper and plastic device combines isothermal amplification and lateral flow to detect malaria (Photo courtesy of Rice University).
Image: The paper and plastic device combines isothermal amplification and lateral flow to detect malaria (Photo courtesy of Rice University).
Recombinase polymerase amplification (RPA) is promising for further development since it operates in a short time frame and produces a product that can be visually detected on a lateral flow dipstick.

Isothermal amplification techniques are emerging as a promising method for malaria diagnosis since they are capable of detecting extremely low concentrations of parasite target while mitigating the need for infrastructure and training required by other nucleic acid based tests.

Bioengineers at Rice University (Houston, TX, USA) developed an integrated device capable of carrying out isothermal amplification using the RPA reaction, post-amplification dilution, and lateral flow detection of the resulting product. The paper and plastic device developed amplified the target using RPA; diluted the resulting product; and detected the product using a lateral flow sandwich assay. In addition, the device transferred the product between the amplification, dilution, and detection modules. A sequence of paper pads loaded with various reagents was used to carry out these functions.

The device is made of simple components, can be assembled by the user and uses a novel slider method to transport reagents through the system. The equipment needed beyond the device itself and the sample to be tested are a hot plate capable of 37 °C, a reusable 25 gram metal weight, the RPA master mix, the running/dilution buffer and pipettes to load these reagents onto the device dilution, running buffer, RPA and sample pads. This device runs the entire assay, including detection, in around an hour and has a limit of detection equivalent to when the assay is run using conventional methods on the bench top. The total run time for the device is 55 minutes, and including the loading and operation of the device, the entire assay can be carried out in about an hour.

The authors concluded that the fabricated device amplified a sequence which is common to the human infectious species of Plasmodium and operated an isothermal amplification reaction which is rapid and has an easy visual readout. A paper and plastic device was also developed which carries out the amplification of the samples, dilutes the product and runs the result on a lateral flow strip. When tested on synthetic targets, a limit of detection of 5 copies/µL (50 total copies) was found, which matches the performance of the same assay run on the bench top. The study was published on November 26, 2015, in the Malaria Journal.

Related Links:

Rice University 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.