We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Test Results of Fingerstick Blood Vary Significantly

By LabMedica International staff writers
Posted on 29 Nov 2015
Print article
Image: Blood obtained via fingerstick is commonly used in point-of-care assays (Photo courtesy of The Health).
Image: Blood obtained via fingerstick is commonly used in point-of-care assays (Photo courtesy of The Health).
Blood obtained via fingerstick is commonly used in point-of-care assays, but few studies have assessed variability in parameters obtained from successive drops of fingerstick blood, which may cause problems for clinical decision making and for assessing accuracy of point-of-care tests.

The most accurate way to carry out medial laboratory tests is to draw blood from a vein and send it to a laboratory but sometimes, such as in low-resource settings, results are needed more rapidly, or the health professional is not trained to draw vein-blood, or there is no laboratory. In such settings, there is a higher reliance on fingerstick tests.

Bioengineers at Rice University (Houston, TX, USA) used a hematology analyzer to analyze the hemoglobin concentration, total white blood cell (WBC) count, three-part WBC differential, and platelet count in six successive 20 µL of blood collected from one fingerstick from each of 11 donors. The team used a hemoglobinometer to measure the hemoglobin concentration of 10 drops of fingerstick blood from each of seven donors to check whether the minimum droplet size made a difference and they checked all the results against blood taken from donors' veins. They also followed best practice to ensure accurate results. For example, they wiped away the first droplet to remove traces of disinfectant, and they did not squeeze or "milk" the finger.

The results showed that hemoglobin content, platelet count and white blood cell count varied significantly from drop to drop. The average percent coefficient of variation (CV) for successive drops of fingerstick blood was higher by up to 3.4 times for hemoglobin, 5.7 times for WBC count, three times for lymphocyte count, 7.7 times for granulocyte count, and four times for platelets than in venous controls measured using a hematology analyzer. The average percent CV for fingerstick blood was up to five times higher for hemoglobin than venous blood measured using a point-of-care hemoglobinometer. The investigators found that averaging the results of six to nine successive droplet tests produced results on a par with the venous blood tests.

Meaghan M. Bond, a doctoral student and first author of the study, said, “In some donors, the hemoglobin concentration changed by more than 2 g/dL in the span of two successive drops of blood. Our results show that people need to take care to administer fingerstick tests in a way that produces accurate results because accuracy in these tests is increasingly important for diagnosing conditions like anemia, infections and sickle-cell anemia, malaria, HIV and other diseases.” The study was published on November 18, 2015, in the American Journal of Clinical Pathology.

Related Links:

Rice University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.