We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Inherited Gene Mutation Leads to Ovarian Cancer

By LabMedica International staff writers
Posted on 03 Feb 2016
Women who carry an inherited fault in a certain gene are more than three times more likely to develop epithelial ovarian cancer (EOC) than those without the mutation. More...


Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes could have a clinically significant impact on reducing disease mortality as around 18 women in every 1,000 develop ovarian cancer, but this risk increases to around 58 women in every 1,000 for women with a mutation in a specific gene.

An international team of scientists led by those at the University of Cambridge Cancer Group (UK) compared the genes of more than 8,000 white European women which included around 3,250 women diagnosed with ovarian cancer, 3,400 women who did not have cancer and 2,000 women who had a family history of the disease. For each gene, they estimated the prevalence and EOC risks and evaluated associations between germline variant status and clinical and epidemiological risk factor information.

Next generation sequencing was used to identify germline mutations in the coding regions of four candidate susceptibility genes: BRCA1 Interacting Protein C-Terminal Helicase 1 (BRIP1), BRCA1 Associated RING Domain 1 (BARD1), Partner and Localizer of BRCA2 (PALB2) and Nibrin (NBN). The scientists found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the participants from a clinical screening trial of ovarian cancer (UKFOCSS) (0.6%) compared with control patients (0.09%), but no differences for BARD1, NBN1 or PALB2.

The authors concluded that deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer prevention.

Paul D. P. Pharoah, MD, a professor of Cancer Epidemiology and co-director of the study, said, “Our work has found a valuable piece of the puzzle behind ovarian cancer and we hope that our work could eventually form the basis of a genetic test to identify women at greatest risk. Finding these women will help us prevent more cancers and save lives. This would be important in a disease like ovarian cancer, which tends to be diagnosed at a late stage when the chances of survival are worse.” The study was published in the January 2016 edition of the Journal of the National Cancer Institute.

Related Links:

University of Cambridge Cancer Group



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.