We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Variations in T-cells Identifies Susceptibility to Disease

By LabMedica International staff writers
Posted on 09 Dec 2016
Print article
Image: A colored scanning electron micrograph (SEM) of two T lymphocyte cells attached to a cancer cell (Photo courtesy of the National Institute of Health).
Image: A colored scanning electron micrograph (SEM) of two T lymphocyte cells attached to a cancer cell (Photo courtesy of the National Institute of Health).
Different cells of the human body differ greatly in structure and function; however, variation exists even among cells of one type and it is now suggested that the magnitude of such differences in T lymphocytes, or T cells, may indicate an individual's age and genetic predisposition to disease.

Learning more about so-called cell-to-cell expression variation, or CEV, may further illuminate how the immune system functions and one day serve as a diagnostic tool to help implement personalized medicine as CEV is a prevalent feature of even well-defined cell populations, but its functions, particularly at the organismal level, are not well understood.

Scientists at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) used single-cell data obtained via high-dimensional flow cytometry of T cells as a model to introduce an analysis framework for quantifying CEV in primary cell populations and studying its functional associations in human cohorts. They used data from a previous study in which blood samples from a healthy, unrelated cohort of individuals were drawn at an initial visit, one week later, and at two months.

The scientists analyzed different subtypes of T cells, immune cells that facilitate, regulate and direct the destruction of infected or cancerous cells, in these samples by quantifying protein expression in single cells. While identifying cell-surface proteins is a standard method for categorizing T cells, the team also quantified cell-to-cell variation of protein levels and compared how such differences varied among individuals and in a single person over time.

The analyses of 840 CEV phenotypes spanning multiple baseline measurements of 14 proteins in 28 T cell subpopulations suggest that the quantitative extent of CEV can exhibit substantial subject-to-subject differences and yet remain stable within healthy individuals over months. Although the degree of cell-to-cell variation for many protein and cell combinations remained relatively constant in individuals over the two-month observation period, the magnitude of variation seemed to differ among individuals and could serve as unique personal markers.

Furthermore, certain variations were associated with age and carrying genes linked to disease. For example, individuals who carried a genetic variant associated with an increased risk for developing asthma were more likely to have more variable expression of a specific protein called CD38 among a subtype of T cells. The team plans to use the framework they developed to help identify potential CEV biomarkers for autoimmune diseases and other health problems. The study was published on November 15, 2016, in the journal Immunity.

Related Links:
US National Institute of Allergy and Infectious Diseases

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.