We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biosensor Test System Developed Using Magnetic Nanoparticles

By LabMedica International staff writers
Posted on 14 Feb 2016
Print article
Image: Schematics of the magnetic particle quantification (MPQ) platform:  the antigen is the test protein (e.g., PSA). MP is the magnetic nanoparticle; the upside down Y is the antibody to the test protein. The test antibodies (the blue Ys) capture the test protein, and the control antibodies (the yellow Ys) capture the antibodies with the nanoparticles (Photo courtesy of Moscow Institute of Physics and Technology).
Image: Schematics of the magnetic particle quantification (MPQ) platform: the antigen is the test protein (e.g., PSA). MP is the magnetic nanoparticle; the upside down Y is the antibody to the test protein. The test antibodies (the blue Ys) capture the test protein, and the control antibodies (the yellow Ys) capture the antibodies with the nanoparticles (Photo courtesy of Moscow Institute of Physics and Technology).
A new biosensor test system based on magnetic nanoparticles has been developed and it is designed to provide highly accurate measurements of the concentration of protein molecules in various samples, including opaque solutions or strongly colored liquids.

The analysis is conducted using small test strips made of porous material with two test lines. A droplet of the sample liquid is applied to one end of the strip and after a short period the result is shown as the activation of one or both lines. The test can be done quickly and does not need to be carried out by specially trained staff; tests can easily be performed next to a patient or even in field conditions.

Scientists at Moscow Institute of Physics and Technology (Russia) have developed a dry-reagent immunomagnetic (DRIM) biosensing platform for rapid high-precision quantitative analyses for in vitro diagnostics. The platform combines the advantages of immunochromatography with highly sensitive quantification of 200-nm magnetic nanoparticles (MP) from the entire volume of lateral flow membranes. At molecular level, the magnetic nanoparticles "link" with antibodies to the required protein and then they are placed on a porous plate close to the intended point of contact with the test solution.

The new system was tested by measuring 25 pg/mL of prostate-specific antigen in the blood as the "healthy" range is anything lower than 4 ng/mL. Prostate-specific antigen is one of the most commonly monitored markers in clinical examinations on men. The scientists used their own patented method magnetic particle quantification (MPQ) to precisely count magnetic nanoparticles by their nonlinear magnetization. Using this method, scientists are able to record anything above 60 zmol (zeptomole; i.e., a factor of 10-21) of nanoparticles in a linear range exceeding ten million times in about 30 minutes. These parameters have never been recorded at this level before. The method involves applying an alternating magnetic field to the nanoparticles at two frequencies and monitoring the induction response at combinatorial frequencies.

The combination of reliability, accessibility, and high accuracy and sensitivity of the new method means that it is likely to make a rapid transition from a laboratory prototype to mass production. The developers have not yet given a specific timeframe, but they emphasize that their test system can be used not only to diagnose diseases, but also for a number of other applications. The study was published online on December 21, 2015, in the journal Biosensors and Bioelectronics.

Related Links:

Moscow Institute of Physics and Technology 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.