We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Protein Biomarker Identifies Damaged Brain Wiring After Concussion

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: SNTF stained axons (brown) shortly after traumatic brain injury. The undulating course suggests damage to the internal skeleton, and the SNTF stain shows the high calcium concentration-activated enzymes that destroy the axon from the inside out (Photo courtesy of the laboratory of Douglas Smith, MD).
Image: SNTF stained axons (brown) shortly after traumatic brain injury. The undulating course suggests damage to the internal skeleton, and the SNTF stain shows the high calcium concentration-activated enzymes that destroy the axon from the inside out (Photo courtesy of the laboratory of Douglas Smith, MD).
Mild traumatic brain injury (TBI) or concussion is often defined as a brief loss of normal brain function typically following a blow to the head and is by far the most common form of TBI and frequently does not even receive medical attention.

A brain protein called alpha II-spectrin N-terminal fragment (SNTF), which rises in the blood after some concussions, signals the type of brain damage that is thought to be the source of cognitive impairments, and may be useful as a biomarker of permanent axonal injury.

Scientists at University of Pennsylvania School of Medicine (Philadelphia, PA, USA) selected TBI cases to include 18 patients who died acutely following severe TBI, with survival times ranging from six hours to one week. Detailed reports from the diagnostic autopsy and/or forensic reports were available for all cases and indicated a history of a single severe TBI, supported by autopsy findings. TBI cases were compared to material from 16 age/sex-matched controls, acquired at routine diagnostic post-mortem at the same institution. Controls had no documented history of TBI.

Paraffin-embedded tissue from human postmortem studies was subjected to routine histology including hematoxylin and eosin (H&E) staining as well as immunohistological techniques. A synthetic peptide corresponding to the calpain-generated neoepitope in SNTF (CAQQEVY) was conjugated covalently to maleimide-activated Sepharose via the cysteine side chain and the resulting resin used for affinity purification of SNTF-specific antibodies. Adjacent, serial sections were labeled with an antibody reactive for the N-terminal amino acids 66–81 of the amyloid precursor protein (APP). Some sections were coverslipped using fluorescence mounting medium and visualized using a confocal Eclipse Ti microscope (Nikon; Tokyo, Japan).

Immunohistochemistry (IHC) specific for SNTF was compared to that of amyloid precursor protein (APP), the current standard for diffuse axonal injury (DAI) diagnosis, and other known markers of axonal pathology including non-phosphorylated neurofilament-H (SMI-32), neurofilament-68 (NF-68) and compacted neurofilament-medium (RMO-14) using double and triple immunofluorescent labeling. Supporting its use as a biomarker of DAI, SNTF immunoreactive axons were observed at all time points following both human severe TBI and in the model of mild TBI.

Robert Siman, PhD, a coauthor of the study, said, “The study suggests that we may soon have a blood biomarker for concussion akin to the standard blood test used to detect cardiac damage from heart attacks. SNTF in the blood of a concussed individual may provide a specific diagnosis of diffuse axonal injury as well as the process of axonal degeneration. The study was published on November 20, 2015, in the journal Acta Neuropathologica.

Related Links:

University of Pennsylvania School of Medicine 
Nikon 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.