We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Novel Technology Diagnoses Stroke Quickly

By LabMedica International staff writers
Posted on 08 Dec 2015
Print article
Image: The TECAN Safire UV-VIS-IR and fluorescence microplate reader (Photo courtesy of California Institute of Technology).
Image: The TECAN Safire UV-VIS-IR and fluorescence microplate reader (Photo courtesy of California Institute of Technology).
A new approach to identifying biomarkers in blood has proven successful in helping diagnose stroke, and the technology could be expanded to diagnose such conditions as concussion, some forms of dementia, and some types of cancer and heart disease.

There is pressing need for quick and objective diagnostic technologies for both time sensitive and difficult to diagnose pathologies. Much attention has therefore focused on the identification of disease-specific peripheral biomarkers, and use of new technologies to improve antibody-based detection capabilities.

Scientists at Cornell University (Ithaca, NY, USA) and their colleagues used a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, they used oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer.

They performed in vitro, animal model, and human subject studies. They used tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients. Freshly collected plasma was diluted with water and added to individual wells of a 96-well plate preloaded with lyophilized Tethered Enzyme Technology (TET) reagent mixtures for negative, test and positive control wells in triplicates. The readout luminescence signal was integrated for 0.4 seconds, and read continuously for 25 minutes using a Safire plate reader (TECAN; Männedorf, Switzerland). For calculation of NSE levels, the linear regression slope for the initial activity was calculated per each well.

The scientists found that their data correlated very well with the current gold standard for biomarker detection, enzyme-linked immunosorbent assay (ELISA) with a major difference being that they achieved detection in 10 minutes as opposed to the several hours required for traditional ELISA. Alexander J. Travis, VMD, PhD an Associate Professor of Reproductive Biology, and lead author of the study said, “This system could be tailored to detect multiple biomarkers. That's the strength of the technique. You could assemble a microfluidic card based on this technology that could detect ten biomarkers in different wells, and the readout would be the same for each one: light. Using the same detection system for multiple different biomarkers would make for a simple system in a relatively small package.” The study was published on November 25, 2015, in the journal Public Library of Science ONE.

Cornell University 
TECAN 

Related Links:
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.