We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Surgical Recovery Correlates with Single-Cell Immune Signatures

By LabMedica International staff writers
Posted on 15 Oct 2014
Print article
Image: The CyTOF Mass Cytometer for High-Dimensional Single Cell Analysis (Photo courtesy of the University of Virginia).
Image: The CyTOF Mass Cytometer for High-Dimensional Single Cell Analysis (Photo courtesy of the University of Virginia).
The activity level of a small set of immune cells during the first 24 hours after surgery provides strong clues to how quickly patients will recover from surgery-induced fatigue and pain.

A highly sensitive technology, called single-cell mass cytometry, enables simultaneous monitoring of large numbers of biochemical features both on the surfaces of immune cells and within the cells, providing information of what kind of cells are present and whether they are active.

Scientists at Stanford University Medical Center (CA, USA) recruited 32 otherwise healthy patients, mostly between ages 50 and 80, who were undergoing first-time hip-replacement procedures. Blood samples from these patients were drawn 1 hour before surgery, then at 1, 24 and 72 hours postsurgery and again four to six weeks after surgery. Cytometric analysis of 35 features in and on each sample's roughly half-million constituent cells yielded profiles of the cells' identities along with key activities underway inside them. Stained cells were analyzed on a CyTOF mass cytometer (DVS Sciences; Sunnyvale, CA, USA) at an event rate of 400 to 500 cells per second.

The simultaneous analysis of 14,000 phosphorylation events in precisely phenotyped immune cell subsets revealed uniform signaling responses among patients, demarcating a surgical immune signature. When regressed against clinical parameters of surgical recovery, including functional impairment and pain, strong correlations were found with signal transducer and activator of transcription (STAT3), adenosine 3′,5′-monophosphate response element–binding protein (CREB) , and nuclear factor κB (NF-κB) signaling responses in subsets of cluster of differentiation 14+ (CD14+) monocytes. The cells in question account for only about 1% to 2% of all the white blood cells found in a typical sample of a healthy person's blood, so the changes within them could easily have been missed had a less-thorough detection technology been employed.

Brice Gaudilliere, MD, PhD, a lead author of the study, said, “If we could predict recovery time before surgery even took place we might be able to see who'd benefit from boosting their immune strength beforehand, or from presurgery interventions such as physical therapy. It might even help us decide when or if a patient should have surgery.” The study was published on September 24, 2014, in the journal Science Translational Medicine.

Related Links:

Stanford University Medical Center
DVS Sciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.