We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Lateral Flow Assay Detects Leprosy Immune Response

By LabMedica International staff writers
Posted on 22 May 2014
Print article
Image: Packard FluoroCount microtiter-plate reader adapted to read lateral flow strips (Photo courtesy of PerkinElmer).
Image: Packard FluoroCount microtiter-plate reader adapted to read lateral flow strips (Photo courtesy of PerkinElmer).
Image: The ESEQuant Lateral Flow Assay Reader (Photo courtesy of Qiagen).
Image: The ESEQuant Lateral Flow Assay Reader (Photo courtesy of Qiagen).
Field-applicable tests detecting asymptomatic Mycobacterium leprae infection or predicting progression to leprosy are urgently required to determine both cellular and humoral immunity.

Leprosy, a curable infectious disease caused by M. leprae that affects the skin and peripheral nerves, is one of the six diseases considered as a major threat in developing countries as continued transmission in endemic areas likely occurs from the large reservoir of individuals who are infected subclinically.

Infectious disease specialists at the Leiden University Medical Center (The Netherlands) with colleagues in Ethiopia recruited for their study human immunodeficiency virus (HIV)-negative, newly diagnosed untreated leprosy patients, and healthy endemic controls from October 2011 until November 2012. Leprosy was diagnosed based on clinical, bacteriological and histological observations and classified by a skin biopsy.

The combined diagnostic value of interferon (IFN)-γ induced protein 10 (IP-10), interleukin-10 (IL-10) and anti-Phenolic Glycolipid-I (PGL-I) antibodies was tested using M. leprae-stimulated blood of leprosy patients and endemic controls (EC). For reduction of the overall test-to-result time, the minimal whole blood assay time required to detect distinctive responses was investigated. To accommodate Lateral Flow Assays (LFAs) for field settings, dry-format LFAs for IP-10 and anti-PGL-I antibodies were developed allowing storage and shipment at ambient temperatures. Additionally, a multiplex LFA-format was applied for simultaneous detection of anti-PGL-I antibodies and IP-10. For improved sensitivity and quantitation, upconverting phosphor (UCP) reporter technology was applied in all LFAs.

After immunochromatography, LF strips are scanned in a Packard FluoroCount microtiter- plate reader (PerkinElmer; Waltham, MA, USA) adapted with an infrared laser. Upon IR excitation at 980 nm, UCP reporter particles emit green light detectable using a 550 nm band pass filter. For strip analysis in Ethiopia, a lightweight portable LF strip reader with UCP capability was used (UCP-Quant, an ESEQuant LFR reader custom adapted with IR diode; (QIAGEN Lake Constance GmbH; Stockach, Germany).

Single and multiplex UCP-LFAs correlated well with enzyme-linked immunosorbent assays (ELISAs) run in parallel. The performance of dry reagent assays and portable, lightweight UCP-LF strip readers indicated excellent field-robustness. Notably, detection of IP-10 levels in stimulated samples allowed a reduction of the whole blood assay time from 24 hours to six hours. Moreover, IP-10/IL-10 ratios in unstimulated plasma differed significantly between patients and endemic controls, indicating the feasibility to identify M. leprae infection in endemic areas.

The authors concluded that dry-format UCP-LFAs are low-tech, robust assays allowing detection of relevant cytokines and antibodies in response to M. leprae in the field. The high levels of IP-10 and the required shorter whole blood assay time, render this cytokine useful to discriminate between leprosy patients and endemic controls. The study was published on May 8, 2014, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

Leiden University Medical Center
PerkinElmer 
QIAGEN Lake Constance GmbH


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.