We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Two New Types Of Childhood Leukemia Discovered

By LabMedica International staff writers
Posted on 22 Jun 2016
Print article
Image: A blood film of a pediatric patient with B-cell precursor acute lymphoblastic leukemia (Photo courtesy of Dr. Peter Maslak, MD).
Image: A blood film of a pediatric patient with B-cell precursor acute lymphoblastic leukemia (Photo courtesy of Dr. Peter Maslak, MD).
Acute lymphoblastic leukemia is a rare disease, but the most common form of cancer in children and nowadays the treatment is very successful, but requires intense interventions at the risk of causing many side effects.

There is therefore a need to distinguish between different types of acute lymphoblastic leukemia, in order to adapt the treatment according to the severity of each case, and to detect possible relapse. Previous studies of childhood acute lymphoblastic leukemia have shown that there are six major groups of acute lymphoblastic leukemia in children.

A large team of international scientists led by those at Lund University (Sweden) studied leukemia cells from more than 200 children using next-generation sequencing technology (NGS), and were able to study the genome of cancer cells, which is how they discovered the two new types of cancer. The discovered two new types, together representing about 10% of all childhood leukemia, can now be added to the other groups.

The investigators were able to delineate the fusion gene landscape in a consecutive series of 195 pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). They used ribonucleic acid (RNA) sequencing, to find in-frame fusion genes in 127 (65%) cases, including 27 novel fusions. They describe a subtype characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression of DUX4 and frequently co-occurring with intragenic ERG deletions. They identified a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting ETV6 and IKZF1 alterations. The study provides a detailed overview of fusion genes in pediatric BCP ALL and added new pathogenetic insights, which may improve risk stratification and provide therapeutic options for this disease.

Thoas Fioretos, MD, PhD, a professor and principal investigator of the study said, “Like all types of cancer, childhood leukemia is caused by genetic mutations in normal cells, which are then transformed into cancer cells. Finding the critical mutations in the diseased cells are an important condition for understanding the mechanisms of the disease and ultimately discovering new therapies,” The study was published on June 6, 2016, in the journal Nature Communications.

Related Links:
Lund University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.