We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Donated Blood Could Be Transformed Into Universal Type

By LabMedica International staff writers
Posted on 10 May 2015
Print article
Image: Hemagglutination test of red cells used for typing ABO blood groups (Photo courtesy of University College London).
Image: Hemagglutination test of red cells used for typing ABO blood groups (Photo courtesy of University College London).
Blood transfusions are critically important in many medical procedures, but the presence of antigens on erythrocytes means that careful blood-typing must be carried out prior to transfusion to avoid adverse and sometimes fatal reactions following transfusion.

Every day, thousands of people need donated blood, but only blood without A- or B-type antigens, such as type O, can be given to all of those in need, and it's usually in short supply. However an efficient way to transform A and B blood into a neutral type that can be given to any patient has been reported.

Scientists at the University of British Columbia (Vancouver, BC, Canada) working with other Canadian and French investigators studied how to enzymatically remove the terminal N-acetylgalactosamine or galactose of A- or B-antigens, respectively, which would yield universal O-type blood. They started with the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 which cleaves the entire terminal trisaccharide antigenic determinants of both A- and B-antigens from some of the linkages on red blood cell surface glycans. Through several rounds of evolution, they developed variants with vastly improved activity toward some of the linkages that are resistant to cleavage by the wild-type enzyme.

The investigators fine-tuned one of those enzymes and improved its ability to remove type-determining sugars by 170-fold, rendering it antigen-neutral and more likely to be accepted by patients regardless of their blood type. The authors concluded that the resulting enzyme effects more complete removal of blood group antigens from cell surfaces, demonstrating the potential for engineering enzymes to generate antigen-null blood from donors of various types. In addition to blood transfusions, the scientists say their advance could potentially allow organ and tissue transplants from donors that would otherwise be mismatched. The study was published on April 14, 2015, in the Journal of the American Chemical Society.

Related Links:

University of British Columbia 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.