We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Optical Interferometry Assays Stored Erythrocyte Function

By LabMedica International staff writers
Posted on 16 Sep 2014
Print article
Image: The topography of a red blood cell as measured by the spatial light interference microscope (SLIM) optical technique. Though the cell keeps its shape as it ages, the membrane becomes less flexible (Photo courtesy of Prof. Gabriel Popescu).
Image: The topography of a red blood cell as measured by the spatial light interference microscope (SLIM) optical technique. Though the cell keeps its shape as it ages, the membrane becomes less flexible (Photo courtesy of Prof. Gabriel Popescu).
The effect of the storage on the erythrocyte membrane deformability and morphology has been investigated using optical interferometry which can image red blood cell (RBC) topography with nanometer sensitivity.

Stored red blood cells or erythrocytes undergo numerous biochemical, structural, and functional changes, commonly referred to as storage lesion and these changes can impede the ability of erythrocytes to perform their function and, as result, impact clinical outcomes in transfusion patients.

Scientists and engineers at the University of Illinois at Urbana-Champaign (Urbana, IL, USA) used as source for RBC samples, packed red cells from donors collected in anticoagulant and preservation solution through the apheresis technique. The samples, two O+ and two A+, were obtained from saved segments of blood tube which is routinely attached to the blood unit in blood banks and maintained at 4 °C for the entire measurement period.

A sample chamber was created by punching a hole in a double sided scotch tape and sticking one side of the tape onto a poly-l-lysine coated cover slip (Neuvitro; El Monte, CA, USA). The sample is then pipetted into the chamber created by the hole and is sealed on the top using another cover slip. RBCs are allowed to settle for 45 minutes on the poly-l-lysine coated cover slip in order to avoid any cell movement prior to fast RBC imaging. A spatial light interference microscope (SLIM) was used where the optical layout is essentially a 4f-telecentric system. The SLIM was designed as an add-on module to a commercial phase contrast microscope the Axio Observer Z1 (Carl Zeiss Microscopy GmbH, Jena, Germany). Fast phase images were continuously recorded at 10 frames per second.

The team discovered that their measurements revealed a lot of characteristics stay the same over time as the cells retain their shape, mass and hemoglobin content. However, the membranes become stiffer and less elastic as time goes by. This is important because the blood cells need to be flexible enough to travel through tiny capillaries and permeable enough for oxygen to pass through. Increased stiffness in stored discocytes may be associated with reduction in post-transfusion survival and accelerate removal of transfused cells from the circulation. Availability of this dynamic membrane function assay may allow optimization of storage solution for RBCs with the objective of not only maintaining a normal RBC morphology but also normal membrane functionality.

Krishna Tangella, MD, a professor of pathology and a coauthor of the study said, “The results of this study can have a wide variety of clinical applications. Functional data from red blood cells would help physicians determine when to give red-cell transfusions for patients with anemia. This study may help better utilization of red-cell transfusions, which will not only decrease healthcare costs but also increase the quality of care.” The study was published on September 5, 2014, in the journal Scientific Reports.

Related Links:

University of Illinois at Urbana-Champaign
Neuvitro
Carl Zeiss Microscopy 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.