We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Automated Hematology Analyzer Enumerates Peripheral Blood Stem Cells

By LabMedica International staff writers
Posted on 15 Jan 2014
Print article
Image: The XN-2000 series model automated hematology analyzer (Photo courtesy of Sysmex).
Image: The XN-2000 series model automated hematology analyzer (Photo courtesy of Sysmex).
The number of infused cluster of differentiation CD34+ cells, which are normally found in the umbilical cord and bone marrow as hematopoietic cells, is crucial to the success of peripheral blood stem-cell transplantation (PBSCT).

Although the ability to count CD34+ cells currently depends solely on flow cytometric analysis, the complexity of the procedure and cost of reagents, including monoclonal antibodies, are major disadvantages, which can be overcome using an automated hematology analyzer.

Scientists at the National Cancer Center Hospital (Tokyo, Japan) have introduced a novel method based on hemolysis and chemical staining, followed by flow cytometry-based optical detection, and conducted using an automated hematology analyzer. Cells expressing the CD34+ and hematopoietic progenitor cells (HPCs) were compared in 76 granulocyte colony-stimulating factor (G-CSF)-mobilized blood or apheresis samples taken from 18 healthy donors and 6 patients undergoing autologous PBSCT.

The newly launched XN-series model automated hematology analyzer (Sysmex Corporation; Kobe, Japan) was used to measure the HPCs. The XN-series model is equipped with a white precursor cell (WPC) channel to detect immature cells, such as myeloblasts and abnormal lymphocytes. The measuring principle of this channel utilizes the optical detection system and general flow cytometry. In this channel, two reagents are used: the lysis reagent containing a polyoxyethylene nonionic surfactant and the stain reagent containing a polymethine dye. CD34+ cells were isolated using MACS magnetic cell separation kits (Miltenyi Biotec; Bergisch Gladbach, Germany).

The investigators found a strong correlation between the numbers of HPCs and CD34+ cells. The expected total number of HPCs in the final products, which was estimated from HPCs in preapheresis peripheral blood (PB) or midapheresis products, also correlated well with the total number of CD34+ cells in the final products. The change in HPCs in PB closely resembled that of CD34+ cells during mobilization. Studies using immunomagnetic beads suggested that the majority of CD34+ cells existed in HPCs, and vice versa.

The authors concluded that their novel HPC enumeration method can be carried out without using monoclonal antibodies on an XN-series automated hematology analyzer. The final amount of collected CD34+ cells may be predicted from the total number of HPCs in the final products, as well as from preapheresis PB and intermediate products during apheresis. HPCs may also be a good indicator for the optimal timing of peripheral blood ste- cell collection. The study was published on December 27, 2013, in the International Journal of Laboratory Hematology.

Related Links:

National Cancer Center Hospital
Sysmex Corporation
Miltenyi Biotec


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.