Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
Bio-Rad Diabetes Division
FOCUS DIAGNOSTICS, INC.

Lab-on-a-Chip Promises Biochemical Diagnostics

By Labmedica International staff writers
Posted on 07 Mar 2013
Lab-on-a-chip technologies are attractive as they require fewer reagents, have lower detection limits, allow for parallel analyses, and can have a smaller footprint.

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, and high-throughput screening.

Scientists at the University of Illinois (Urbana, IL USA) used microfabrication techniques and incorporated a unique design of transistor-based heating, for further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

The approach performs localized heating of individual subnanoliter droplets that can allow for new applications that require parallel, time-and space-multiplex reactions on a single integrated circuit. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products.

By using microfabrication techniques and incorporating the unique design of transistor-based heating with individual reaction volumes, “laboratory-on-a-chip” technologies can be scaled down to “laboratory-on-a-transistor” technologies as sensor/heater hybrids that could be used for point-of-care diagnostics.

Rashid Bashir, PhD, a professor at the University of Illinois said, “We have demonstrated that single stranded DNA (ssDNA) probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules. Notably, our miniaturized heater could also function as dual heater/sensor elements, as these silicon-on-insulator nanowire or nanoribbon structures have been used to detect DNA, proteins, pH, and pyrophosphates.”

The authors concluded that the technique they described to heat subnanoliter droplets-in-air for visualization of DNA denaturation with resolution down to single base mismatches has application to current DNA microarray technologies. The study was published on February 11, 2013, in the journal Proceedings of the National Academy of Science of the United States of America (PNAS).

Related Links:

University of Illinois



77 ELEKTRONIKA
DiagCor Bioscience
PURITAN MEDICAL
comments powered by Disqus
Life Technologies

Channels

Clinical Chemistry

view channel
Image: The Cobas 6000 Multipurpose Clinical Laboratory analyzer (Photo courtesy of Roche Diagnostics).

Low Density Lipoprotein Apolipoprotein-B Assay Validated

The relationship between apolipoprotein-B (Apo-B) concentration and the risk of developing cardiovascular disease (CVD) is more robust than the relationship between low density lipoprotein cholesterol... Read more

Microbiology

view channel

Novel Sequence Analysis Services Improve Pathogen Identification

A set of new-generation sequencing (NGS) services provides unique tools for more effective identification of known and unknown microorganisms, including bacterial, viral, fungal, and protozoan parasite pathogens. Aperiomics (Ashburn, VA, USA) has now introduced its breakthrough Absolute-NGS Pathogen Detection Platform... Read more

Industry News

view channel

Market for qPCR Exceeds USD 3 Billion

The market for real-time quantitative polymerase chain reaction (qPCR) was valued at about USD 3.2 billion for 2013 according to Kalorama Information (New York, NY, USA) an increase from USD 2.8 billion in 2011. The healthcare market researcher said that the testing system is considered the workhorse of research providing... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.