We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Thermo Fisher Scientific

Thermo Fisher Scientific Inc. serves customers who are accelerating life sciences research, solving complex analytica... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Biomarker Identified in Breast and Prostate Cancers

By LabMedica International staff writers
Posted on 25 Aug 2015
Print article
Image: The LTQ Orbitrap Elite mass spectrometer (Photo courtesy of Thermo Scientific).
Image: The LTQ Orbitrap Elite mass spectrometer (Photo courtesy of Thermo Scientific).
A novel genetic biomarker has been identified responsible for the progression of many breast and prostate cancers and these finding could bolster efforts to better identify patients who respond to certain types of chemotherapy drugs that attack the most aggressive forms of cancer.

Metastatic dissemination is a multistep process that involves cell migration, invasion and growth at distant sites and the “amoeboid” phenotype has emerged as a migratory mechanism that facilitates metastasis. Amoeboid behavior is prominent at the invasive front of tumors, confers rapid migration rates and enables survival within the vasculature.

Scientists at Cedars-Sinai Medical Center (Los Angeles, CA, USA) and their colleagues investigated whether the loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes, which are widely employed chemotherapies for patients with metastatic prostate and breast cancer.

Different patient cohorts were analyzed for DIAPH3 gene expression profiles and various other techniques were used in the study. These included the identification of DIAPH3 interactomes where tryptic peptides were extracted, concentrated, reconstituted in 0.1% formic acid, separated on a 25 cm EASY-Spray C18 column, and analyzed by an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific; Waltham, MA, USA). Live cells were imaged using a Nikon Ti inverted confocal microscope (Nikon Instruments Inc.; Melville, NY, USA) coupled to a Spinning Disk head (Yokogawa Electric Corporation; Tokyo, Japan).

The scientists found that that loss of DIAPH3, frequently associated with metastatic breast and prostate cancers, correlated with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes.

Shlomo Melmed, MD, director of the Burns and Allen Research Institute at Cedar-Sinai, said, “By identifying cancer biomarkers, then customizing treatment plans for individuals based on this genetic information, we can greatly improve the effectiveness of cancer therapies. This customized plan replaces a one-size-fits-all approach to cancer treatment.” The study was published online on July 16, 2015, in the journal Scientific Reports.

Related Links:

Cedars-Sinai Medical Center
Thermo Scientific 
Nikon Instruments Inc.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.