We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Simple Method Monitors β-Cell Death in Type 1 Diabetes Individuals

By LabMedica International staff writers
Posted on 17 Feb 2015
Print article
Image: QX100 Droplet Reader for Droplet Digital PCR system (Photo courtesy of Bio-Rad).
Image: QX100 Droplet Reader for Droplet Digital PCR system (Photo courtesy of Bio-Rad).
The β-cell killing that characterizes type 1 diabetes (T1D) is thought to begin years before patients present clinically with metabolic decompensation; however, this primary pathologic process of the disease has not been measured.

The kinetics of disease progression is limited because there are no methods that directly measure β-cell death, but a method has been recently developed for assessing β-cell death in vivo by measuring the relative amount of β-cell-derived unmethylated insulin (INS) DNA in the circulation.

A team of scientists led by those at Yale University (New Haven, CT, USA) performed an observational study of 50 participants from two cohorts at risk for developing T1D from the TrialNet Pathway to Prevention study and of four subjects who received islet autotransplants. DNA was purified from serum samples using QIAamp DNA Blood Kits (Qiagen; Venlo, The Netherlands).

Analysis of β-cell death was carried out by measuring the levels of unmethylated INS DNA by droplet digital polymerase chain reaction (ddPCR). The DNA content of the droplets was analyzed with a QX100 Droplet Reader (Bio-Rad; Hercules, CA, USA). Plasma C-peptide levels were measured using the Tosoh AIA 1800 assay (Tokyo, Japan).

In at-risk subjects, those who progressed to T1D had average levels of unmethylated INS DNA that were elevated modestly compared with those of healthy control subjects. In at-risk individuals that progressed to T1D, the observed increases in unmethylated INS DNA were associated with decreases in insulin secretion, indicating that the changes in unmethylated INS DNA are indicative of β-cell killing. Subjects at high risk for T1D had levels of unmethylated INS DNA that were higher than those of healthy controls and higher than the levels of unmethylated INS DNA in the at-risk progressor and at-risk non-progressor groups followed for four years. Evaluation of insulin secretory kinetics also distinguished high-risk subjects who progressed to overt disease from those who did not.

The authors concluded that that a blood test that measures unmethylated INS DNA serves as a marker of active β-cell killing as the result of T1D-associated autoimmunity. Together, the data support the concept that β-cell killing occurs sporadically during the years prior to diagnosis of T1D and is more intense in the peridiagnosis period. The study was published on February 2, 2015, in the Journal of Clinical Investigation.

Related Links:

Yale University
Qiagen 
Bio-Rad


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ASTar System has received US FDA 510(k) clearance (Photo courtesy of Q-linea AB)

Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections

Sepsis affects up to 50 million people globally each year, with bacteraemia, formerly known as blood poisoning, being a major cause. In the United States alone, approximately two million individuals are... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.