We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genes Linked to Drug Resistance in Testicular Cancer

By LabMedica International staff writers
Posted on 03 Feb 2015
Print article
Image: Micrograph of a testicular seminoma with histologic characteristics of a seminoma, clear cytoplasm with a central nucleus (‘fried egg-like cells’) (Photo courtesy of Nephron).
Image: Micrograph of a testicular seminoma with histologic characteristics of a seminoma, clear cytoplasm with a central nucleus (‘fried egg-like cells’) (Photo courtesy of Nephron).
Several new genetic mutations have been revealed that could drive testicular cancer. In addition, a gene has been identified, which may contribute to tumors becoming resistant to current treatments.

The main testicular germ cell tumor (TGCT) histologies are seminomas, which resemble undifferentiated primary germ cells, and non-seminomas, which show differing degrees of differentiation. Cure rates for TGCTs are generally high, due to the sensitivity of malignant testicular germ cells to platinum-based chemotherapies; however this is at the cost of an increased risk of metabolic syndrome, infertility and secondary cancer.

A team of scientists led by those at the Institute of Cancer Research (London, UK) used a genetic technique called whole-exome sequencing to examine tumor samples from 42 patients with undergoing testicular cancer treatment. Surgical specimens were snap frozen within 30 minutes of surgery and matched blood samples were collected at the time of surgery. Tumor samples were trimmed to remove surrounding normal tissue, and tumor cells were confirmed by histological assessment. Tumor and matched lymphocyte DNA were extracted by standard techniques.

Samples for whole-exome sequencing were quantified using Qubit technology (Invitrogen; Carlsbad, CA, USA) and sequencing libraries constructed from 50 ng of respective normal/tumor DNA. Library preparation was performed using 37 Mb Nextera Rapid Capture Exome kits (Illumina; San Diego, CA, USA), with enzymatic tagmentation, indexing polymerase chain reaction PCR, clean-up, pooling, target enrichment and post-capture PCR amplification/quality control performed in-house, following standardized protocols. Samples underwent paired-end sequencing using the Ilumina HiSeq2500 platform with a 100-bp read length.

The investigators uncovered a number of new chromosome duplications and other abnormalities that could contribute to the development of this cancer, as well as confirming a previous association with the V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog gene (KIT). Their study also found defective copies of a DNA repair gene called X-Ray Repair Complementing Defective Repair In Chinese Hamster Cells 2 (XRCC2) in a patient who had become resistant to platinum-based chemotherapy. They were able to verify the link between XRCC2 and platinum resistance by sequencing an additional sample from another platinum-resistant tumor.

Clare Turnbull, MD, PhD, the team leader, said, “Our study is the largest comprehensive sequencing study of testicular tumors published to date, describing their mutational profile in greater detail than has been possible using previous technologies. We have identified new potential driver mutations for this type of cancer, and provided new evidence of a link between mutations in the gene XRCC2 and platinum treatment-resistant tumors.” The study was published on January 22, 2015, in the journal Nature Communications.

Related Links:

The Institute of Cancer Research
Invitrogen 
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.