We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Real-Time Genome Sequencing Helps Control Hospital Outbreak

By LabMedica International staff writers
Posted on 01 Dec 2014
Print article
Image: The Genome Sequencer 454FLX system (Photo courtesy of Roche).
Image: The Genome Sequencer 454FLX system (Photo courtesy of Roche).
Whole-genome sequencing (WGS) of bacterial isolates provides a promising contemporary method for investigating the epidemiology of outbreaks, particularly when coupled to clinical locational and temporal data.

Acinetobacter baumannii is an important cause of nosocomial or hospital-acquired infection, particularly ventilator-associated pneumonia and bloodstream infections in critically ill patients, and has a tendency to cause hospital outbreaks.

Scientists at the Warwick Medical School (UK) and their colleagues investigated multidrug-resistant Acinetobacter (MDR-Aci) isolates obtained from routine clinical samples through culture on blood agar, followed by single-colony isolation. Bacterial identification and antibiotic susceptibility testing were performed in the hospital microbiology laboratory on the Vitek 2 system (bioMérieux; Basingstoke, UK). Multidrug resistance was defined as resistance to equal to or greater than three classes of antibiotics; quinolones, extended-spectrum cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, and carbapenems.

Genomic DNA was extracted from 114 putative Acinetobacter isolates, applying Qiagen 100/G Genomic-tips (Manchester, UK ) to 5 mL to 10 mL of overnight culture. The genome of an isolate from a patient was sequenced on two different sequencing platforms, the 454 FLX (454 Life Sciences, Branford, CT, USA) and the Illumina MiSeq (San Diego, CA, USA). The scientists were able to identify 74 patients belonging to a prolonged outbreak in the hospital by sampling both patients and the environment. They then determined the detailed genetic makeup of the bacteria carried by each of these patients and used this data, with information about the ward that the patients were housed in, and the date of their first positive tests, to identify nearly 70 possible transmission events. Armed with this detailed information, the investigators were able to pinpoint transmission hot spots within the hospital, which included an operating theatre and a specialized bed for burns patients. Deep cleaning of these transmission sites followed and new decontamination protocols were put in place by the hospital.

The authors concluded that whole genome sequencing is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens. Mark J. Pallen, MD, PhD, the senior author of the study, said, “We have demonstrated how whole genome sequencing can be applied in a clinically helpful timeframe to track and control the spread of drug-resistant hospital pathogens. In this case, it helped understand and control what was probably longest running A. baumannii outbreak ever seen in this country.” The study was published on November 20, 2014, in the journal Genome Medicine.

Related Links:

Warwick Medical School
bioMérieux
454 Life Sciences

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.