We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biomarker Reveals Cause of Papillary Thyroid Carcinoma

By LabMedica International staff writers
Posted on 26 Oct 2014
Print article
Image: Tumor cell populations identified using digital image analysis from a stained pathology slide, with the tumor regions detected and now colored orange (Photo courtesy of Definiens).
Image: Tumor cell populations identified using digital image analysis from a stained pathology slide, with the tumor regions detected and now colored orange (Photo courtesy of Definiens).
The expression of the CAP-GLY domain containing linker protein 2 (CLIP2) provides information on whether a papillary thyroid carcinoma was induced by radiation or had a sporadic origin.

The biomarker CLIP2 serves as a radiation marker because after exposure to radiation from radioiodine, both the genetic activity and the protein expression are increased especially among children exposed to the radioiodine fallout and have developed papillary thyroid carcinoma (PTC).

Scientists at the Helmholtz Zentrum München (Neuherberg, Germany), and their international colleagues, studied PTCs from a cohort of young patients exposed to the post-Chernobyl radioiodine fallout at very young age and a matched non-exposed control group. They investigated the potential role of CLIP2 as a radiation marker to be used for the individual classification of PTCs into CLIP2-positive and -negative cases, a prerequisite for the integration of CLIP2 into epidemiological modelling of the risk of radiation-induced PTC. A discovery cohort of 33 individuals and two independent validation cohorts of 115 PTCs were investigated.

The team were able to validate the radiation-associated CLIP2 overexpression at the protein level by immunohistochemistry (IHC) followed by relative quantification using digital image analysis software (Definiens AG; Munich, Germany). They analyzed the function of CLIP2 in radiation-associated PTC, by reconstructing the CLIP2 gene regulatory network using global messenger ribonucleic acid (mRNA) expression data from PTC patient samples. The genes comprising the first neighborhood of CLIP2, BCL2-associated athanogene 2 (BAG2), carbohydrate (chondroitin 6) sulfotransferase 3 (CHST3), kinesin family member 3C (KIF3C), neuralized E3 ubiquitin protein ligase 1 (NEURL1), peptidylprolyl isomerase (cyclophilin)-like 3 (PPIL3), and regulator of G-protein signaling 4 (RGS4) suggest the involvement of CLIP2 in the fundamental carcinogenic processes including apoptosis, mitogen-activated protein kinase signaling and genomic instability.

Julia Hess, MD, the senior author of the study said, “CLIP2 serves as a radiation marker and allows us to distinguish between radiation-induced and sporadic thyroid carcinomas. This biomarker allows us both to draw conclusions about the mechanisms involved in the development of such tumors and to evaluate the risk of thyroid cancer after exposure to high level radiation, for instance, following a radiation accident.” The study was published on October 6, 2014, in the journal Oncogene.

Related Links:

Helmholtz Zentrum München 
Definiens AG

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.