We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Makeup Uncovered in New Form of Cancer

By LabMedica International staff writers
Posted on 25 Jun 2014
Print article
Image: The 3730xl DNA Analyzer (Photo courtesy of Applied Biosystems).
Image: The 3730xl DNA Analyzer (Photo courtesy of Applied Biosystems).
The molecular signature and genetic structure has been revealed of a new form of cancer that begins in the nose and is called biphenotypic sinonasal sarcoma (SNS).

The cancer, that appears to be most common in women, starts in the nose and can spread to the rest of the face, meaning the patient will need disfiguring surgery in order to survive, but by uncovering the molecular makeup of the tumor it was found that many existing cancer drugs that could be used to treat it.

A team of scientists from the Mayo Clinic (Rochester, MN, USA) retrieved formalin-fixed, paraffin-embedded tumor blocks and histological sections of SNS biopsied or resected between 1956 and 2013 for 25 tumors, including a second sample that was also characterized at the cytogenetic level. A frozen tumor sample was obtained from a single specimen characterized at the cytogenetic level. Formalin-fixed, paraffin-embedded material from 145 nonrelated tumors and normal tissues was also retrieved.

Transcriptome sequencing was performed on extracted ribonucleic acid (RNA), and the concentration was measured using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Paired-end 50-base transcriptome sequencing was performed using a HiSeq 2000 sequencer (Illumina, San Diego, CA, USA). Real-time polymerase chain reaction were carried out on extracted RNA and sequenced with a 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA). Other techniques including immunoblotting and immunofluorescence, luciferase assays immunohistochemistry, and fluorescence based in situ hybridization (FISH), were also used.

The scientists discovered a recurrent chromosomal translocation in SNS, t(2;4)(q35;q31.1), resulting in a paired box 3- mastermind-like 3 (PAX3-MAML3) fusion protein that is a potent transcriptional activator of PAX3 response elements. FISH and RT-PCR studies confirmed rearrangement of the PAX3 locus in 24 of 25 SNS tumors (96%) and identified the PAX3-MAML3 fusion gene in 19 of these tumors (79%). Five of the remaining SNS tumors exhibited rearrangement of the PAX3 locus without MAML3 involvement, and a single tumor showed rearrangement of the MAML3 locus without PAX3 involvement. They did not detect the PAX3-MAML3 fusion in 118 other tumors, including rhabdomyosarcomas, melanomas, and benign and malignant nerve sheath tumors or in 18 normal tissues, including 13 normal sinonasal tissues.

André M Oliveira, MD, the senior author of the study said, “It's unusual that a condition or disease is recognized, subsequently studied in numerous patients, and then genetically characterized all at one place. Usually these things happen over a longer period of time and involve separate investigators and institutions. Because of Mayo's network of experts, patient referrals, electronic records, biorepositories and research scientists, it all happened here. And this is only the tip of the iceberg. Who knows what is in our repositories waiting to be discovered?” The study was published on May 25, 2014, in the journal Nature Genetics.

Related Links:

Mayo Clinic 
Life Technologies
Applied Biosystems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.