We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Molecular Methods Compared for Quantitative Detection of Epstein-Barr Virus

By LabMedica International staff writers
Posted on 31 May 2016
Print article
Image: A scanning electron micrograph (SEM) of budding Epstein-Barr virus and a B-cell lymphocyte (Photo courtesy of the Albert Einstein College of Medicine).
Image: A scanning electron micrograph (SEM) of budding Epstein-Barr virus and a B-cell lymphocyte (Photo courtesy of the Albert Einstein College of Medicine).
Quantitative detection of Epstein-Barr virus by real time polymerase chain reaction (PCR) has become standard of care in the management of immunocompromised patients and is integral to their treatment.

The performance characteristics of four real-time assays, three that use different analyte specific reagent (ASRs) and one that uses laboratory-developed reagents, have been compared with one another for the detection of Epstein-Barr virus (EBV) in whole blood.

Scientists at St. Jude Children's Research Hospital (Memphis, TN, USA) seeded whole blood specimens with EBV, which were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and coefficient of variation (CV) for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance.

The ASRs used in the study were produced by Focus Diagnostics (Cypress, CA, USA), Luminex Corporation (Austin, TX, USA), and ELITechGroup (Bothell, WA, USA). The modified laboratory diagnostic test (LDT) was used with the QX100 ddPCR system (Bio-Rad, Hercules, CA, USA) for droplet digital (ddPCR) amplification.

The investigators found that all the assays showed similar performance with no significant difference was found in limit of detection (3.12–3.49 log10 copies/mL). A strong qualitative correlation was seen with all assays that used clinical samples with positive detection rates of 89.5% to 95.8%. Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays.

The team notes that the Focus ASR reagents can be stored at 4 °C after the first thaw, saving time for future test preparation. The latter assay runs on a 96-well disk in a small volume, and the PCR can be performed in less than an hour, using the 3M Integrated Cycler. However, great attention is needed to load the disk. The other three methods use 96-well plates, and the PCRs were run on an Applied Biosystem sequence detection system 7500, but it could be run on other systems that accept 96-well plates.

The authors concluded that quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. The study was published online on May 22, 2016, in the Journal of Molecular Diagnostics.

Related Links:
St. Jude Children's Research Hospital
Focus Diagnostics
Luminex
ELITechGroup
Bio-Rad
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.