We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Infectious Disease Test Promises Quick Diagnosis

By LabMedica International staff writers
Posted on 05 Jan 2016
Print article
Image: Colored Transmission electron micrograph of Clostridium difficile forming an endospore (red) (Photo courtesy of Dr. J. Thomas Lamont).
Image: Colored Transmission electron micrograph of Clostridium difficile forming an endospore (red) (Photo courtesy of Dr. J. Thomas Lamont).
Early detection of specific pathogens has long been recognized as a vital strategy in the control of infectious diseases because it can lead to timely care of patients and prevent potential outbreaks.

The detection of specific bacteria represents a significant challenge because of the presence of many different species of bacteria in biological samples. Furthermore, for any given species of bacterium, only virulent strains are infectious while other strains of the same species may be harmless or even beneficial to human health.

A team of scientists led by those at McMaster University (Hamilton, ON, Canada) found a way to make DNAzymes, or single-stranded catalytic DNA molecules from a simple test tube technique that allows for isolation of rare DNA sequences with special functions. The team's first success was the development of a molecular probe that precisely recognizes the strain which caused the outbreak of Clostridium difficile infection in Hamilton, Ontario in 2011. This strain was very infectious, resistant to antibiotics and even fatal to some patients. Instead of having to do several different tests to narrow down to a positive identification of the specific strain, the scientists can now quickly pinpoint this superbug using their new molecular probe.

The team obtained an RNA-cleaving fluorogenic DNAzyme (RFD) that can recognize an infectious strain of C. difficile. This DNAzyme not only exhibits no cross-reactivity to other bacterial species, but also is highly strain-selective for C. difficile. The special DNAzyme (catalytic DNA), RFD-CD1, showed exquisite specificity for a pathogenic strain of C. difficile. RFD-CD1 was derived by an in vitro selection approach where a random-sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficile, coupled with a subtractive selection strategy to eliminate cross-reactivities to unintended C. difficile strains and other bacteria species.

Bruno J. Salena, MD, an associate professor of medicine and coauthor of the study, said, “This technology can be extended to the further discovery of other superbug strain-specific pathogens. For example, such technology would prove useful in the identification of hypervirulent or resistant strains, implementation of the most appropriate strain-specific treatments and tracking of outbreaks.” The study was published on December 16, 2015, in the journal Angewandte Chemie International Edition.

Related Links:

McMaster University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.