We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Urinary NAG-Creatine Ratio Predicts Advanced Diabetic Kidney Disease

By LabMedica International staff writers
Posted on 03 Jan 2023
Print article
Image: The AU5800 fully automated biochemical analyzer (Photo courtesy of Beckman-Coulter)
Image: The AU5800 fully automated biochemical analyzer (Photo courtesy of Beckman-Coulter)

Diabetes is the leading cause of chronic kidney disease and end-stage kidney disease worldwide and becomes one of the biggest healthcare challenges of the 21st century. Microvascular complications have been identified as the common and major diabetic complications.

Diabetic Kidney Disease (DKD) typically manifests a progressive deterioration of kidney function, and the increased glomerular filtration rate (GFR), glomerular hypertrophy, and excretion of urinary albumin are the major indicators. Various urine proteins may exhibit significant differences in diagnostic, predictive, and prognostic power for DKD.

Medical Scientists at the Suzhou Medical College of Soochow University (Suzhou, China) retrospectively analyzed a total of 117 patients with type 2 DKD, 83 males and 34 females, aged 37–85 years, including early and advanced stages and their laboratory parameters were statistically assessed. The patients were divided into two groups: early (stages IIa and IIb) and advanced (stages III and IV) groups based on the pathological grading.

The urine in spot time and whole 24 hours was obtained, and the fasting venous blood of patients were collected in vacutainer tubes. A BC-7500 automatic hematological analyzer (Mindray Inc, Shenzhen, China) was used to analyze the white blood cell (WBC), neutrophil (NEU), and high sensitive C reactive protein (HS-CRP). Multiple biochemical indexes were measured, which included serum creatine (sCR), serum urea (sUR), cholesterol (CHOL), homocysteine (HCY), thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), fibrinogen (FIB), and d-dimer (D-D).

The levels of urinary creatinine, N-acetyl-β-d-glucosaminidase (NAG), total protein (PRO), microalbumin (MA), immunoglobulin G (IgG), transferrin (TFR), and α1-microglobulin (α1MG) in spot urine, and albumin excretion (UAE) in 24 hour urine were measured by the AU5800 fully automated biochemical analyzer (Beckman-Coulter, Brea, CA, USA). Urinary N-acetyl-β-d-glucosaminidase (NAG) and proteins to creatinine ratios were calculated to present as NAG/CR, PRO/CR, albumin to creatine ratio (ACR), IgG/CR, TFR/CR, and α1MG/CR.

The investigators reported that N-acetyl-β-d-glucosaminidase-creatine (NAG/CR) level in advanced DKD was statistically higher than that in early DKD, and there was a higher incidence of advanced DKD (72% versus 56%) and high odds ratio (OR: 3.917) of NAG/CR with ≥2.79 U/mmol compared with <2.79 U/mmol. NAG/CR ratio also showed a higher area under the ROC curve of 0.727 with a high sensitivity (0.75) and a moderate specificity (0.66) when 1.93 U/mmol was set as the optimal cutoff value. The adjusted-multivariable analysis revealed that NAG/CR had an OR of 1.021 and 2.223 based on a continuous and categorical variable, respectively, for risk of advanced DKD. Moreover, the prevalence of advanced DKD exhibited an increasing tendency by an increment of the trisector of NAG/CR.

The authors concluded that NAG/CR ratio is an independent predictor for advanced DKD in type 2 diabetes (T2D) patients, and it also can be used as a powerful identifying marker between early and advanced DKD. The study was published on December 26, 2022 in the Journal of Clinical Laboratory Analysis.

Related Links:
Suzhou Medical College of Soochow University
Mindray Inc 
Beckman-Coulter 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Chemiluminescence Immunoassay Analyzer
Shine i3000
New
Drug Detection Platform
ABSOLUDY Drug Detection Platform

Print article

Channels

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue (Photo courtesy of Ozcan Research Group)

AI-Based Tissue Staining Detects Amyloid Deposits Without Chemical Stains or Polarization Microscopy

Systemic amyloidosis, a disorder characterized by the buildup of misfolded proteins in organs and tissues, presents significant diagnostic difficulties. The condition affects millions of people each year,... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.