We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biomarker of Early-Stage Lung Cancer Identified

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Histopathology of non-small-cell lung cancer (Photo courtesy of the Center of Genome Pathology).
Image: Histopathology of non-small-cell lung cancer (Photo courtesy of the Center of Genome Pathology).
A biomarker that detects the most common lung cancer in its earliest stage has been identified and this discovery could one day change how long lung cancer patients live.

Non-small-cell lung cancer (NSCLC) carries a poor survival rate mainly due to metastasis; however, the molecular mechanisms that govern NSCLC metastasis are undescribed, though NSCLC accounts for about 85% of all lung cancers.

Scientists at the National Cheng-Kung University (Tainan, Taiwan) by examined lung tissue from 121 patients. They investigated role of Huntingtin interaction protein-1 (HIP1) in lung cancer progression and metastasis, the cause of most lung cancer deaths. In addition to serving as a biomarker, the team found, HIP1 represses the mobility of lung cancer cells in laboratory studies and suppresses metastasis in a mouse model of the cancer.

The investigators found that those in the earliest stages of the diseases expressed more HIP1 than those in the later stages of the disease. They also studied the correlation between HIP1 expression in early stages of the disease (stage I-II), and found a significant correlation between those patients who expressed higher levels of HIP1 and longer survival, indicating that HIP1 was a prognostic biomarker. They also studied the correlation between HIP1 and cellular mobility in vitro and in a mouse model of adenocarcinoma.

In the laboratory, they found that HIP1 expression was inversely associated with cancer cell mobility. They confirmed those results in their mouse model. High levels of HIP1 expression were significantly associated with fewer metastatic tumor cells. Then they investigated the mechanisms behind HIP1's ability to suppress cellular mobility and metastasis. They found that HIP1 modulates the serine/threonine-specific protein kinase B (Akt) that regulates the epithelial-mesenchymal transition, which in turn facilitates cell invasion and the beginning of metastasis.

Pei-Jung Lu, PhD, a professor of medicine and senior investigator of the study, said, “If we can restore HIP1 levels and functions, we may be able to stop or prevent human lung cancer metastasis in the early stage. To bring this discovery to clinical care, we now need to identify the regulatory factors of the HIP1 gene that are targetable through gene therapy or small molecule interventions.” The study was published on November 23, 2015, in the American Journal of Respiratory and Critical Medicine.

Related Links:

National Cheng-Kung University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.