We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Cancer Detected by Dynamic Morphology Tracking on Aptamer-Grafted Surfaces

By LabMedica International staff writers
Posted on 22 Dec 2015
Print article
Image: Confocal micrograph of immunohistochemically stained human glioblastoma (hGBM) cells (Photo courtesy of Olympus).
Image: Confocal micrograph of immunohistochemically stained human glioblastoma (hGBM) cells (Photo courtesy of Olympus).
Cell motility is a phenomenon where cells move by protruding and contracting sections of the membrane that is a complex process performed through sophisticated balancing act between internal cytoskeleton structure and the cell membrane proteins.

Cancer cells are known to be abnormally flexible compared to healthy cells, primarily due to their inherent weak structures and the forces between the cytoskeleton and the cell surface proteins which differ between cancerous and healthy cells. The surface receptors are found in large numbers on the surface of cancer cells.

Scientists at the University of Texas (Arlington, TX, USA) and their colleagues have developed a novel cancer cell detection method based on real time cell behavior tracking on engineered surfaces. A synthetic ribonucleic acid (RNA) molecule is coated on chip surface to identify cancer cells. The one-step tumor cell detection approach is based on the dynamic morphological behavior tracking of cancer cells on a ligand modified surface.

The human glioblastoma (hGBM) cells showed distinctly enhanced cell movements and activity on the RNA functionalized chips. Every cell on the surface was tracked in real time for several minutes immediately after seeding until these were finally attached. Cancer cells were found to be very active in the aptamer microenvironment, changing their shapes rapidly from spherical to semi-elliptical, with much flatter spread and extending pseudopods at regular intervals.

When incubated on a functionalized surface, the balancing forces between cell surface molecules and the surface-bound aptamers together with the flexibility of the membranes caused cells to show these distinct dynamic activities and variations in their morphologies. On the other hand, healthy cells remained distinguishingly inactive on the surface over the same period. The quantitative image analysis of cell morphologies provided feature vectors that were statistically distinct between normal and cancer cells.

Samir Iqbal, PhD. the principal investigator of the study said, “The initial results hold great potential for applications like cancer screening. A multiple chip based device targeting several proteins can lead to a generic cancer diagnostic platform. The advantage of the technology compared to others is that it is suitable for a quick diagnosis. Once matured, the method has potential to serve as an additional modality to identify tumor cells based on their physical behavior from blood samples or biopsy specimen directly drawn from patients.” The study was published on November 16, 2015, in the journal TECHNOLOGY.

Related Links:

University of Texas


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.