We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood Processing Methods Affect Microparticles Linked To Transfusion Reactions

By LabMedica International staff writers
Posted on 29 Apr 2016
Print article
Image: The BD LSR II benchtop flow cytometer (Photo courtesy of Becton Dickinson).
Image: The BD LSR II benchtop flow cytometer (Photo courtesy of Becton Dickinson).
Specific red blood cell manufacturing methods may be less damaging to cells than others and knowledge of this could help reduce adverse reactions in transfusion recipients and may impact the future of how blood is collected around the world.

Scientists have looked at the levels of microparticles and mitochondrial DNA (mtDNA) present in blood that can indicate cellular damage. Studying red blood cell units manufactured using nine different processes; they observed clear differences in the extent of damage across the nine methods.

A team of scientists led by those at the Blood Systems Research Institute (San Francisco, CA, USA) prepared 87 red cell concentrates (RCCs) using nine different methods (six to 15 units/method), including three apheresis, five whole blood (WB)-derived leucoreduced (LR) and one WB-derived non-LR method. On storage days five and 42, levels of mtDNA were measured by polymerase chain reaction (PCR), and number and cell of origin of extracellular vesicle (EVs) were studies by flow cytometry and were assessed in RCC supernatants.

Red blood cell (RBC) and residual platelet (rPLT) counts were measured using a Coulter AcT 8 hematology analyzer (Beckman Coulter Inc., Fullerton, CA, USA). Residual white blood cell (WBC) counts were measured by flow cytometry with the LeukoSure WBC enumeration kit. MtDNA quantification was implemented after DNA extraction and real-time PCR were performed on a LightCycler 480 II sequence detection system (Roche, Basel, Switzerland). EVs quantification were assessed by flow cytometry, using a 3-laser (blue 488 nm, violet 405 nm, and red 633 nm) LSR II benchtop flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).

The team found that here was a 100-fold difference in mtDNA levels among methods, with highest levels in non-LR, followed by MCS+ and Trima apheresis RCCs. There was a 10-fold difference in EV levels among methods. RBC-derived CD235a+ EVs were found in fresh RCCs and increased in most during storage. Platelet-derived CD41a+ EVs were highest in non-LR and Trima RCCs and did not change during storage. WBC-derived EVs were low in most RCCs; CD14+ EVs increased in several RCCs during storage.

Sonia Bakkour, PhD, the lead investigator said, “Our study showed that those molecular patterns are present and that their levels and composition are different based on the red cell manufacturing process, that is the process and materials used to collect or prepare red cells for transfusion. This tells us that some manufacturing processes cause less damage to the red blood cells than others.” The study was published on April 11, 2016, in the journal Vox Sanguinis.

Related Links:
Blood Systems Research Institute
Beckman Coulter
Roche
Becton Dickinson
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.