We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Targeting MicroRNA Blocks Drug Tolerance in Some Cancers

By LabMedica International staff writers
Posted on 15 Apr 2019
Cancer researchers have suggested that by exploiting the link between a specific microRNA and the tricarboxylic acid energy-producing cycle it may be possible to prevent or reverse the development of drug tolerance or resistance by non-small-cell lung carcinomas.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. More...
MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Non-small cell lung cancers, which comprise about 85% of lung cancer diagnoses, tend to be less aggressive but harder to treat than small cell lung cancers. About 10% of non-small-cell lung carcinomas carry an epidermal growth factor receptor (EGFR) mutation. Drug tolerance developed by cancer cells is an acute defense response preceding a fully drug-resistant state and tumor relapse; however, there are few therapeutic agents targeting drug tolerance in the clinic.

As part of their effort to identify drugs able to modify drug tolerance, investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) found that the microRNA miR-147b initiated a reversible state of tolerance to the epidermal growth factor receptor (EGFR) inhibitor osimertinib in non-small-cell lung cancer. Osimertinib is a medication used to treat non-small-cell lung carcinomas with the specific EGFR mutation. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

The investigators reported in the April 8, 2019, online edition of the journal Nature Metabolism that using miRNA-seq analysis, they determined that miR-147b was the most upregulated microRNA in osimertinib-tolerant and EGFR-mutated lung cancer cells. Whole-transcriptome analysis of single-cell-derived clones revealed a link between osimertinib tolerance and pseudohypoxia responses irrespective of oxygen levels.

Further metabolomics and genetic studies demonstrated that osimertinib tolerance was driven by miR-147b-mediated repression of VHL (von Hippel-Lindau tumor suppressor) and succinate dehydrogenase, which are linked to the tricarboxylic acid energy-producing cycle and pseudohypoxia pathways. Finally, pretreatment with a miR-147b inhibitor delayed osimertinib-associated drug tolerance in patient-derived three-dimensional structures.

"These results were a surprise and represent a total novel finding in the area," said senior author Dr. Frank J. Slack, professor of medical research at Beth Israel Deaconess Medical Center. "In this study, we discovered that a microRNA known as miR-147b is a critical mediator of resistance among a subpopulation of tumor cells that adopt a tolerance strategy to defend against EGFR-based anticancer treatments. We are currently testing the idea of targeting this new pathway as a therapy in clinically relevant mouse models of EGFR-mutant lung cancer."

Related Links:
Beth Israel Deaconess Medical Center


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Serological Pipet Controller
PIPETBOY GENIUS
New
Staining Management Software
DakoLink
New
Anti-Thyroid Peroxidase Assay
LIAISON Anti-TPO
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.