We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biological Marker Predicts Susceptibility to Common Cold

By LabMedica International staff writers
Posted on 06 Mar 2013
Print article
A biological marker in the immune system beginning at about age 22 predicts our ability to fight off the common cold.

A team led by Carnegie Mellon University's (CMU; Pittsburgh. PA, USA) Prof. Sheldon Cohen, found that the length of telomeres—protective cap-like protein complexes at the ends of chromosomes—predicts resistance to upper respiratory infections in young and midlife adults. Telomere length is a biomarker of aging that shortens as a person gets older. As a cell's telomeres shorten, it loses its ability to function normally and eventually dies. Having shorter telomeres is associated with early onset of age-related diseases such as cardiovascular disease and cancer, and with mortality in older adults. It has not been clear until now whether telomere length plays a role in the health of young to midlife adults.

Prof. Cohen and his team measured the telomere length of white blood cells from 152 healthy volunteers aged 18–55. These individuals were then exposed to a rhinovirus, which causes a common cold, and quarantined for five days to see if they actually developed an infection.

The results showed that participants with shorter telomeres were more likely to become infected by the cold virus. In addition, although there was no relationship between telomere length and infection among the youngest participants (ages 18–21), beginning at about age 22, telomere length started to predict whether individuals would develop an infection. As participant age increased, telomere length became an even stronger predictor. Additionally, telomere length of a specific type of white blood cell—a CD8CD28- T-cytolytic cell was a superior predictor of infection and cold symptoms than other white blood cell types. The telomeres found that CD8CD28- cells shorten more quickly than those found in other cell types, and previous work has found shorter telomere length in these cells to be associated with decreases in markers of immune competence.

Prof. Cohen explained, "We knew that people in their late 50s and older with shorter telomeres are at a greater risk for illness and mortality. We also knew that factors other than aging, such as chronic stress and poor health behaviors, are associated with shorter telomeres in older people. Consequently, we expected that younger people would vary in their telomere length as well and wanted to see what this would mean for their health."

"These cells are important in eliminating infected cells and those with shorter telomeres in the CD8CD28- cell population may be at greater risk for infection because they have fewer functional cells available to respond to the [cold] virus," Prof Cohen said. "The superior ability of CD8CD28- T-cytolytic cells to predict infection gives us an idea of which cells to focus on in future work on how telomere length influences the immune system's response to infection and other immune-related challenges."

Prof. Cohen emphasized that the team's work was preliminary and that further work with other virus and natural infections is necessary.

The study was published in the February 14, 2013, Journal of the American Medical Association (JAMA).

Related Links:

Carnegie Mellon University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.