Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biomarker Test to Improve Endometrial Cancer Diagnosis

By LabMedica International staff writers
Posted on 25 Mar 2024

Womb cancer, a common cancer in women, is mainly characterized by abnormal bleeding, especially after menopause. While only a small fraction, 5-10%, of women experiencing such bleeding are diagnosed with womb cancer, various benign conditions like polyps and fibroids can also cause bleeding. Presently, women suspected of having womb cancer undergo a transvaginal ultrasound scan, which involves inserting a probe into the vagina to check the thickness of the womb's lining. If the lining appears thickened, further examination is done through hysteroscopy, a process where a narrow telescope equipped with a camera and light is introduced into the womb via the vagina and cervix, and sometimes a biopsy is conducted. These procedures, though thorough, are invasive and often cause discomfort, generating unnecessary stress for the majority of women who do not have the condition. Now, a simple, safe, and accurate test that identifies women with womb cancer from a sample taken from the vagina could spare many healthy women from unnecessary invasive tests.

Clinician scientists from the University of Manchester (Manchester, UK) have discovered a panel of five protein markers in vaginal fluid that can accurately differentiate women with womb cancer from those without the disease. This advancement has led to the development of a test boasting over 95% accuracy in identifying post-menopausal women whose bleeding stems from cancer, surpassing the accuracy of existing diagnostic methods. The new test raises hopes for enhancing womb cancer diagnosis and reducing reliance on the current, more invasive, and anxiety-inducing hospital procedures like hysteroscopy.

During the study, samples were collected from post-menopausal women presenting symptoms, including 53 diagnosed with endometrial cancer and 65 without. The research utilized SWATH-MS, an advanced mass spectrometry technique that calculates molecular masses to reveal their composition and structure. This approach allowed for the meticulous analysis of molecules and the creation of digital protein maps from the samples. Utilizing machine learning, the researchers identified the proteins that differed significantly between the samples, leading to the development of a simple and highly accurate diagnostic model based on proteins. Going forward, the team aims to develop clinically viable tests employing well-established methods such as ELISA or Lumipulse®, or potentially exploring new platforms like lateral flow tests for rapid point-of-care testing.

“The implications of this study are significant,” said Dr Kelechi Njoku from the from University of Manchester who led the study. “If translated into clinical practice, a non-invasive, cost-effective, and accurate detection tool could improve patient care by swiftly identifying those with womb cancer while sparing many healthy women from unnecessary invasive tests.”

Related Links:
University of Manchester

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.