We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

By LabMedica International staff writers
Posted on 14 Mar 2024
Print article
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics. Traditionally, exosomes are isolated through ultrasound centrifugation, a process that requires eight hours or more, requires large sample volumes, and often harms the integrity of these delicate structures. Alternative methods also present challenges, including low purity and yield. Now, researchers have devised a diagnostic technique that employs sound waves to spin a single water droplet at speeds reaching 6,000 revolutions per minute, thereby facilitating the separation of tiny biological particles for exosome-based diagnostics.

This novel approach involves a lightweight disk atop the spinning droplet and featuring etched channels that incorporate star-shaped nanoparticles designed for the label-free identification of exosomes. This method surpasses traditional techniques in efficiency, requiring less time and smaller sample volumes, and minimizes damage to the exosomes. It represents a significant advancement from the expensive equipment currently used for exosome isolation, paving the way for point-of-care applications, including precision bioassays and cancer diagnostics.

Developed by mechanical engineers at Duke University (Durham, NC, USA), the technology utilizes a droplet of water placed within a polydimethylsiloxane ring—a silicone material frequently used in microfluidics—to confine the water’s boundaries and keeps it in place. Sound wave generators positioned on either side of the device emit surface acoustic waves that cause the droplet to spin rapidly. A disc with channels etched on its surface is placed on top of the droplet. As the droplet spins, exosomes are driven toward the ends of the channels, separating them from smaller proteins and contaminants.

To detect the presence of specific biomarkers, the researchers used a technological approach that tethers DNA probes dubbed “Inverse Molecular Sentinels” to the points of star-shaped gold nanoparticles. These tethers naturally want to curl up, but are held straight by a segment of DNA that is tailored to bind to the target microRNA being tested for. When that microRNA comes by on its exosome carrier, it sticks to and removes the DNA, allowing the tether to curl and bring the label molecule in close contact with the nanostar. When exposed to a laser, that label molecule emits a very weak Raman signal. However, the shape and composition of the nanostars amplifies the Raman signals several million-fold and make them easier to detect.

“Our technology can discriminate between cancer and control groups with 95.8% sensitivity and 100% selectivity,” said Tony Jun Huang, the William Bevan Distinguished Professor of Mechanical Engineering and Materials Science at Duke. “Its potential is enormous in fundamental biological research and the early diagnosis and health monitoring of cancers, neurodegenerative and other diseases.”

Related Links:
Duke University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.