We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Discoveries of Prostate Cancer Evolution Pave Way for Genetic Test

By LabMedica International staff writers
Posted on 01 Mar 2024
Print article
Image: Prostate cancer cell image taken using a scanning electron microscope (Photo courtesy of LRI EM Unit)
Image: Prostate cancer cell image taken using a scanning electron microscope (Photo courtesy of LRI EM Unit)

Prostate cancer ranks as one of the most common cancers affecting men, and while it accounts for a significant number of male cancer fatalities, many men live with it rather than die from it. Understanding when to avoid unnecessary treatments is crucial, as it can prevent side effects like incontinence and impotence. Now, new research has identified two distinct subtypes of prostate cancer, referred to as evotypes. This discovery could lead to major advancements in the diagnosis and treatment of prostate cancer.

This discovery was made by an international consortium, called The Pan Prostate Cancer Group, which involved researchers from the University of Oxford (Oxford, UK), who used artificial intelligence (AI) to make new discoveries about the evolution of prostate cancer. Cancer development, like human evolution, can be traced and studied through its evolutionary history. By examining the cancer’s evolutionary tree, valuable insights about the disease can be gained, potentially aiding in the development of new treatments. The research involved an analysis of the DNA of prostate cancer samples from 159 patients through whole genome sequencing, a comprehensive method of examining an individual’s entire genetic material.

The team employed neural networks, an advanced AI technique, to compare the DNA of these samples. This analysis revealed two distinct cancer categories among the patients. These groups were further confirmed using two other mathematical methods applied to different data aspects. Moreover, this finding was corroborated in separate datasets from Canada and Australia. The researchers synthesized all this data to create an evolutionary tree depicting the development of the two prostate cancer subtypes, leading to the identification of two unique evotypes. Building on this discovery, the research team aims to develop a genetic test. This test, in conjunction with traditional staging and grading, could provide a more accurate prognosis for individual patients, enabling personalized treatment decisions. This innovation marks a significant leap forward in the field of prostate cancer research and treatment.

“Our research demonstrates that prostate tumors evolve along multiple pathways, leading to two distinct disease types,” said lead researcher Dr. Dan Woodcock, of the Nuffield Department of Surgical Sciences at the University of Oxford. “This understanding is pivotal as it allows us to classify tumors based on how the cancer evolves rather than solely on individual gene mutations or expression patterns.”

“This study is really important because until now, we thought that prostate cancer was just one type of disease. But it is only now, with advancements in artificial intelligence, that we have been able to show that there are actually two different subtypes at play,” said Professor Colin Cooper, from UEA’s Norwich Medical School. “We hope that the findings will not only save lives through better diagnosis and tailored treatments in the future, but they may help researchers working in other cancer fields better understand other types of cancer too.”

Related Links:
University of Oxford

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.