Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Minimally Invasive Cancer Diagnostic Device Eavesdrops On Cells’ Conversations

By LabMedica International staff writers
Posted on 26 Oct 2023

For a long time, scientists have understood that RNA (ribonucleic acid) serves as an internal messenger within cells, taking DNA's instructions to help the cells produce proteins. However, a recent discovery shows that specific kinds of RNA, termed "extracellular RNA" or exRNA, actually leave the cell. These exRNAs are enclosed in tiny carrier structures and travel through bodily fluids, acting like tiny informational messages in bottles. These exRNAs are incredibly valuable as they could hold early indicators for diseases like cancer, heart disease, and HIV. Detecting diseases via exRNA could be quicker, more effective, and cheaper than current techniques. The challenge, however, has been separating and interpreting these exRNAs, as existing methods like advanced filters and centrifuges haven't been very successful.

A team of scientists at the University of Notre Dame (Notre Dame, IN, USA) has created a groundbreaking device that uses an ingenious approach to 'eavesdrop' on cells’ conversations. This palm-sized device combines existing technologies and employs a mix of pH levels and electrical charges to segregate the exRNA carriers. The unique feature here is that each type of carrier has its own "isoelectric point," a particular pH level at which it has no positive or negative charge. Within the device, there's a seemingly simple stream of water flowing. But this stream is special. On the left side, the water is highly acidic, similar to grapefruit juice. On the opposite end of the stream, the water is extremely basic, with a pH similar to a bottle of ammonia. What's particularly remarkable about the device is its ability to generate this pH gradient in the stream without adding any chemicals, making it cost-effective and eco-friendly.

This gradient is made possible by a two-sided membrane that's powered by a custom-designed chip. This membrane divides the water into two types of ions: acidic hydronium ions and basic hydroxide ions, adding a different kind of ion to each side of the stream. As these acidic and basic streams converge, they form a pH gradient, much like how hot and cold streams form hot and cold sides with a gradient of temperature through the middle of the stream. The researchers ran the two devices in parallel and utilized machine learning to select the ideal pH range needed for separating the carriers.

What sets this approach apart is its effectiveness of the pH gradient in segregating the exRNA carriers floating in the stream. When they pass through the pH gradient, the different types of carriers form lines along their isoelectric points, making it easy to channel them into separate outlets. The researchers could obtain incredibly pure samples—up to 97%—using less than a milliliter of body fluids like blood plasma, saliva, or urine. Moreover, while the best current technologies take around a day to separate samples, this new device accomplished the task in just 30 minutes.

“Noncommunicable diseases are responsible for more than 70 percent of deaths worldwide, and cardiovascular disease and cancer are responsible for most of that number,” said postdoctoral fellow Himani Sharma who served as project lead. “Our technology shows a path to improving the way clinicians diagnose these diseases, and that could save a tremendous number of lives.”

Related Links:
University of Notre Dame

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.