Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Sepsis Test Uses Magnetic Nanoparticles to Detect Bacterial Pathogens

By LabMedica International staff writers
Posted on 24 Aug 2023

When it comes to life-threatening blood poisoning caused by staphylococcus bacteria, quick identification of the bacteria in the bloodstream is vital to begin life-saving treatment. This urgency stems from the fact that staphylococcal sepsis results in fatality for up to 40% of cases. The infection, triggered by spherical bacteria, might initially manifest as a local skin ailment or pneumonia. However, when staphylococci infiltrate the bloodstream during sepsis, severe complications can emerge. In such critical scenarios, prompt identification of pathogens and selection of suitable antibiotics are vital. This is especially crucial as Staphylococcus aureus strains can exhibit resistance to multiple antibiotics. Researchers have now developed "sepsis sensors" using magnetic nanoparticles that enable rapid detection of bacterial pathogens and identification of appropriate antibiotic candidates.

Researchers at Empa (Dübendorf, Switzerland), along with their colleagues from ETH Zurich (Zürich, Switzerland), looked for a way to bypass the lengthy intermediate step of first cultivating the bacteria in a blood sample for a diagnostic procedure. They developed a method utilizing magnetic nanoparticles that are capable of binding to staphylococci. Consequently, these bacteria can be identified through the application of a magnetic field. Subsequently, antibiotic sensitivity is assessed using a chemiluminescence technique. If antibiotic-resistant bacteria are present in the sample, it emits light. Conversely, if the bacteria can be eradicated with antibiotics, the reaction vessel remains dark.

Another problematic bacterial entity is Pseudomonas aeruginosa, a rod-shaped bacterium capable of causing various illnesses, including urinary tract infections via catheterization during hospital stays. Such infections can develop into sepsis, and these pathogens are often resistant to numerous antibiotics. In such cases, magnetic nanoparticles offer the distinct advantage of versatility. The approach can be customized for different bacteria types, similar to a modular system. This adaptability enabled the researchers to design a rapid "sepsis sensor" leveraging magnetic nanoparticles. In samples containing synthetic urine, this method reliably identified bacterial species and gauged potential antibiotic resistance through chemiluminescence reactions. So far, the researchers have assessed their magnetic nanoparticle toolkit for sepsis and urinary tract infections using laboratory samples. In the coming phase, the team plans to validate the sepsis tests alongside their clinical partners by analyzing patient samples.

"All in all, the sepsis test takes around three hours – compared to several days for a classic cultivation of bacterial cultures," said Empa researcher Fei Pan.

Related Links:
Empa 
ETH Zurich 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.